7√3/√10+√3 - 2√5/√6+√5 - 3√2/√5+3√2
Answers
Answer:
The Answer is
Step-by-step explanation:
First part of Question is :
- (7√3)/(√10+√3)
Second Part :
- (2√5)/(√6 + √5)
Third Part :
- (3√2)/(√15 + 3√2)
.
1.) (7√3)/(√10+ √3)
→(7√3)/(√10+√3)
Rationalising the denominator we get,
→ {(7√3)/(√10+√3)} {(√10-√3)/(√10 -√3)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ (7√3*(√10-√3)} / (10 - 3)
→ (7√3*(√10-√3)}/7
→ √3(√10 -√3)
→ (√30 - 3)
━━━━━━━━━━━━━━━━━━━━━━━━━
2.) (2√5)/(√6 + √5)
→ (2√5)/(√6 + √5)
Rationalising the denominator we get,
→ {(2√5)/(√6 + √5)]* {(√6 - √5) / (√6 - √5)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ 2√5 * (√6 - √5)} / (6-5)
→ 2√5 (√6 - √5)
→ 2√30 - 2*5
→ (2√30 - 10).
━━━━━━━━━━━━━━━━━━━━━━━━━
3.) (3√2)/(√15 + 3√2)
→ (3-√2)/(√15 + 3√2)
Rationalising the denominator we get,
→ {(3√2)/(√15 + 3√2)} * {(√15 - 3√2)/(√15 - 3√2)}
using (a + b)(a - b) = a² - b² in Denominator now,
→ (3√2* (v15 - 3√2)} / (15-18)
→ {3√2* (√15 - 3√2)} / (-3)
→ (-1) √2 * (√15 - 3√2)
→ -√30 + 3*2
→ (6 - √30).
━━━━━━━━━━━━━━━━━━━━━━━━━
Therefore,
→ (7√3)/(√10+√3) - (2√5)/(√6 + √5)-(3√2)/(√15 + 3√2)
→ (√30 - 3) - (2√30 - 10) -(6-√30)
→ √30 - 2√30 + √30-3 + 10 -
→ 2√30 - 2√30 + 10 - 9
→ 10 - 9
→