Math, asked by monagoyal3292, 1 year ago

7√3 -5√2 upon √48+ √18.... simplify by rationalising the denominator

Answers

Answered by abdul9838
5

  <b> <body bgcolor = "skyblue"> <font color = "green">

 \small \bf \pink{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{given \: that} \\  \\ \small \bf \pink{ \frac{7 \sqrt{3}  - 5 \sqrt{2} }{ \sqrt{48}  +  \sqrt{18} } } \\  \\ \small \bf \pink{ \frac{7 \sqrt{3}  - 5 \sqrt{2} }{ \sqrt{2 \times 2 \times 2 \times 2 \times 3}  + 2 \times 3 \times 3}  } \\  \\ \small \bf \pink{ \frac{7 \sqrt{3}  - 5 \sqrt{2} }{4 \sqrt{3} + 3 \sqrt{2}  } } \\  \\ \small \bf \pink{ \frac{(7 \sqrt{3} - 5 \sqrt{2} )(4 \sqrt{3}  - 3 \sqrt{2})  }{(4 \sqrt{3} + 3 \sqrt{2}  )(4 \sqrt{3} - 3 \sqrt{2} ) } } \\  \\ \small \bf \pink{ \frac{84 - 21 \sqrt{6} - 20 \sqrt{6}  + 30 }{( {4 \sqrt{3} )^{2}  - (3 \sqrt{2}) }^{2} } } \\  \\ \small \bf \pink{ \frac{84 + 30 - 41 \sqrt{6} }{48 - 18} } \\  \\ \small \bf \pink{ \frac{114 - 41 \sqrt{6} }{30}  \:  \: ans}

Answered by kishansinghbhati
1
i hope it will little bit helpfull for you
Attachments:
Similar questions