Math, asked by sonu8080, 1 year ago

7. a+b+c= 9 and ab+bc+ca=26.Find
 {a}^{2}  +  {b}^{2}  +  {c}^{2}


Answers

Answered by Anonymous
2

We know the formula:

(a+b+c)² = a² + b² + c² + 2(ab+bc+ca)

Given:

a+b+c = 9 & ab+bc+ca = 26

Now putting the values in the above formula,

We get,

(9)² = a² + b² + c² + 2×26

81 = (a² +b² +c²) + 52

(a² +b²+c²) = 81-52

(a² + b² + c²) = 29

Answered by Anonymous
2

Answer:

\huge \red{HELLO\: MATE}

Given that a + b + c = 9

and ab + bc + ca = 26.

So, {a}^2 +{b}^2+{c}^2 =?.

We know that {a+b+c}^2 = {a}^2 +{b}^2+{c}^2  +2( + bc + ca)

a + b + c = 9.

squaring both sides we get =

{a}^2 +{b}^2+{c}^2  +2( + bc + ca) =9×9

or {a}^2 +{b}^2+{c}^2  +2 × 26 =81.

or {a}^2 +{b}^2+{c}^2  = 81-52.

Therefore, {a}^2 +{b}^2+{c}^2  =29

Similar questions