7. a, b, c are positive real numbers such that a2 + b2 = c2 and ab = c. Determine the value of
(a + b + c)(a + b - c)(b + c - a)(c + e - b)
b).
c2
Answers
Step-by-step explanation:
Correct question:-
a, b, c are positive real numbers such that a2 + b2 = c2 and ab = c. Determine the value of
(a + b + c)(a + b - c)(b + c - a)(c + a - b)
Given:-
a, b, c are positive real numbers such that a2 + b2 = c2 and ab = c.
To find:-
Determine the value of (a + b + c) (a + b - c) (b + c - a)(c + a - b).
Solution:-
Given that:-
a,b,c are the positive real numbers
a²+b²=c²-----(1)
ab=c----------(2)
Now,
(a + b + c) (a + b - c) (b + c - a)(c + a - b)
=>[(a+b+c)(a+b-c)](b+c-a)(c+a-b)
(since (a+b)(a-b)=a²-b²)
Here, a=(a+b); b=c
=>[(a+b)²-c²][(b + c - a)(c + a - b)]
=>(a²+2ab+b²-c²)(bc+ba-b²+c²+ac-bc-ac-a²+ab)
=>(a²+b²-c²+2ab)(2ab-a²-b²+c²)
=>(a²+b²-c²+2ab)[2ab-(a²+b²)+c²]
=>(c²-c²+2ab)(2ab-c²+c²)
(from(1))
=>(0+2ab)(2ab+0)
=>(2ab)(2ab)
=>4(ab)²
=>4c² (from(2))
Answer:-
The value of
(a + b + c) (a + b - c) (b + c - a)(c + a - b)=4c²
Using formulae:-
- (a+b)(a-b)=a²-b²