Math, asked by pateljanu1809, 2 days ago

7. Find the mode of the following frequency distribution: Class 0 - 20 20-40 40-60 60-80 80 - 100 100-120 Frequency 8. 9 26 23 20 14 and he moda follow framan​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given data is

\begin{gathered} \begin{array}{|c|c|} \bf{x_i} & \bf{f_i}  \\ \\ 0 - 20 & 8  \\  \\20 - 40 & 9  \\ \\40 - 60 & 26 \\ \\ 60 - 80 & 23  \\ \\80 - 100 & 20\\ \\ 100 - 120 & 14 \end{array}\end{gathered} \\

Now, from above data we concluded that

\rm \: f_0 = 9  \\

\rm \: f_1 = 26  \\

\rm \: f_2 = 23  \\

\rm \: h = 23  \\

 \: l = 40  \\

We know,

\boxed{ \boxed{\rm{ \:  \:  \: Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h  \:  \:  \: }}} \\

where,

 \: l \: \rm \: is \: lower \: limit \: of \: modal \: class \\

 \: h \: \rm \: is \: height  \: of \: modal \: class \\

\rm \: {f_0} \:  is \:  frequency \:  of \:  class \:  preceding  \: modal  \: class \\

\rm{f_1} \:  is  \: frequency  \: of  \: modal  \: class \\

\rm{f_2} \: is \:  frequency \:  of \:  class \:  succeeding \:  modal \:  class \\

So, on substituting the values, we get

\rm \: Mode = 40 + \bigg(\dfrac{26 - 9}{2 \times 26 - 9 - 23} \bigg) \times 20 \\

\rm \: Mode = 40 + \bigg(\dfrac{17}{52   - 32} \bigg) \times 20 \\

\rm \: Mode = 40 + \bigg(\dfrac{17}{20} \bigg) \times 20 \\

\rm \: Mode = 40 +17 \\

\rm\implies \:\boxed{ \rm{ \:\bf \: Mode = 57 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean Using Direct Method :-

\boxed{ \rm{ \: \: Mean = \dfrac{ \sum f_i x_i}{ \sum f_i} \:  \: }} \\

2. Mean Using Short Cut Method :-

\boxed{ \rm{ \: \: Mean =A \:  +  \:  \dfrac{ \sum f_i d_i}{ \sum f_i} \:  \: }} \\

3. Mean Using Step Deviation Method :-

\boxed{ \rm{ \: \: Mean =A \:  +  \:  \dfrac{ \sum f_i u_i}{ \sum f_i} \times h \:  \: }} \\

Answered by patelvanita2228
0

Answer:

Step-by-step explanation:

Similar questions