-7 Formula of sum of n terms of an APj
Answers
Answer:
Sn=n/2[2a+(n-1)d]
Explanation:
Explanation :
- It is the sequence of numbers such that the difference between any two successive numbers is constant.
- General form of AP,
a , a+d , a+2d , a+3d , ..........
- nth term of AP,
⇒ Sum of n terms of an A.P.,
where
a - first term
d - common difference
n - number of terms
l - last term
aₙ - nth term
Sₙ - sum of n terms
Derivation :
a₁ = a
a₂ = a + d
a₃ = a₂ + d = a + d + d = a + 2d
....
aₙ = a + (n - 1)d
⇒ Sum of first n terms,
Sₙ = a₁ + a₂ + a₃ + ..... + aₙ
Sₙ = a + (a + d) + (a + 2d) + ..... + (a + (n-1)d) ---[1]
________________________
aₙ = aₙ
aₙ₋₁ = aₙ - d
aₙ₋₂ = aₙ₋₁ - d = aₙ - d - d = aₙ - 2d
.....
a₁ = aₙ + (n - 1)(-d) = aₙ - (n - 1)d
⇒ Sum of n terms from the end,
Sₙ = aₙ + aₙ₋₁ + aₙ₋₂ + ..... + a₁
Sₙ = aₙ + (aₙ - d) + (aₙ - 2d) + ...... aₙ - (n - 1)d --- [2]
Add both the equations,
Sₙ + Sₙ = a + (a + d) + (a + 2d) +.... + [a +(n-1)d] + aₙ + (aₙ - d) + (aₙ - 2d) + .... + (aₙ - (n-1)d)
2Sₙ = (a + aₙ) + (a + d + aₙ - d) + (a + 2d + aₙ - 2d) + ..... + (a + (n-1)d + aₙ - (n-1)d)
2Sₙ = (a + aₙ) + (a + aₙ) + (a + aₙ) + .... + (a + aₙ)
2Sₙ = n(a + aₙ)
Sₙ = [n(a + aₙ)]/2
We know,
nth term , aₙ = a + (n - 1)d
Sₙ = (n/2) [a + a + (n - 1)d]
Sₙ = (n/2) [2a + (n - 1)d]