Math, asked by Anonymous, 1 year ago

7. If 37 pens and 53 pencils together cost Rs. 320, while 53 pens and 37 pencils together cost Rs. 400. Find the cost of a pen and that of a pencil.

Answers

Answered by shaurya041004
17
let the value of pen be x
let the value if pencil be y
37x+53y=320..........(1)
53x+37y=400..............(2)
on multiplying eq-1 by 53 and eq-2 by 37
1961x+2809y=16960
1961x+1369y=14800
on subtracting
1440y=2160
y=Rs1.5
so x=
37x+53*1.5=320
37x+79.5=320
37x=320-79.5
37x=240.5
x=Rs6.5
so cost of pen is Rs 6.5 and cost of pencil is Rs 1.5
Answered by Elisha15
16
Hello dear friend ...
☺☺ _ SOLUTION _ ☺☺
_____________________________

Let the cost of each pen be ₹ x
and that of a pencil be ₹ y .

Than ,
37x + 53y = 320 \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \: ..  ....(1) \\ and \:  \: 53x + 37y = 400 \:  \:  \:  \:  \:  \:  \:  \:  \: .......(2)

Adding (1) and (2) , we get
90x + 90y = 720 \\  =  > 90(x  +  y) = 720 \\   \\  =  > x  + y =   \frac{720}{90}  = 8 \\  \\  =  > x + y = 8 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  ........(3)

ON subtracting (1) from (2) ,


53x + 37y = 400
37x + 53y = 320
(-) (-) (-)
_______________
16x - 16y = 80
_______________


we get,

16x  - 16y = 80 \\   =  > 16(x - y) = 80 \\   \\   =  > x - y =  \frac{80}{16}  = 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........(4)


Adding (3) and (4) , we get

  2x = 13 \\  =  > x =  \frac{13}{2}  = 6.5


Subtracting (4) from (3) ,

we get

 =  > 2y = 3 \\   \\  =  > y =  \frac{3}{2}  = 1.5


So ,

Cost of each pens = ₹ 6.5
and cost of each pencils = ₹ 1.5

_________________________________

Hope it's helps you.
☺☺
Similar questions