Math, asked by kashishshekhawat1, 2 months ago

7 If p(x) = (ax 2 + bx +c) has zeroes as ‘α’ and ‘β’, find the values of each of the following:- (a) 1 α + 1 β (b) α 3 + β 3 (c) 1 α 3 + 1 β 3 (d) α - β (e) α 3 - β 3​

Answers

Answered by tennetiraj86
4

Step-by-step explanation:

Given :-

P(x) = ax²+bx+c has zeroes are ‘α’ and ‘β’

To find :-

Find the values of each of the following

a)1/α + 1/β

(b) α³+ β³

(c) 1 /α³+ 1 / β³

(d) α - β

(e) α³ - β³

Solution :-

Given that

The Quadratic Polynomial P(x) = ax²+bx+c

Given zeroes are ‘α’ and ‘β’

We know that

Sum of the zeroes = -b/a

α + β = -b/a --------(1)

Product of the zeroes = c/a

=> αβ = c/a ---------(2)

a)Finding the value of 1/α + 1/β :-

1/α + 1/β

=> (α + β)/αβ

=> (-b/a)/(c/a)

=> (-b/a)×(a/c)

=> -ab/ac

=> -b/c

b)Finding the value of α³+ β³:-

We know that

a³+b³ = (a+b)³-3ab(a+b)

α³+ β³ = (α+ β)³ -3αβ(α+ β)

=> α³+ β³ = (-b/a)³-3(c/a)(-b/a)

=>α³+ β³ = (-b³/a³)+(3bc/a²)

=> α³+ β³ = (-b³+3abc)/a³

c)Finding the value of 1 /α³+ 1 / β³

1 /α³+ 1 / β³

=>( α³+ β³)/(α³β³)

=> [(-b³+3abc)/a³]/(c/a)³

=> [ (-b³+3abc)/a³]×(a³/c³)

=> (-b³+3abc)×c³ or

=> -b³c³+3abc⁴

d)Finding the value of α - β:-

We know that

(a-b)² = (a+b)²-4ab

(α - β)² = (α + β)²-4αβ

=> (α - β)² = (-b/a)²-4(c/a)

=> (α - β)² = (b²/a²)-(4c/a)

=> (α - β)² = (b²-4ac)/a²

=> α- β=√[(b²-4ac)/a²]

=>α- β = [√(b²-4ac)] /a

and

(a+b)² = a²+2ab+b²

(α + β)² = α²+ β²+2α β

=> (-b/a)² = α²+ β²+2(c/a)

=> b²/a² = α²+ β²+(2c/a)

=> α²+ β² = (b²/a²)-(2c/a)

=> α²+ β² = (b²-2ac)/a²

e) Finding the value of α³ - β³:-

We know that

a³-b³ = (a-b)(a²+ab+b²)

α³- β³ = (α - β)(α²+ β²+α β)

=> α³- β³ = [√(b²-4ac)/a][((b²-2ac)/a²)+(c/a)]

=> α³- β³ = [√(b²-4ac)/a][(b²-2ac+ac)/a²]

=>α³- β³ = [√(b²-4ac)/a][(b²-ac)/a²]

=> α³- β³ = [√(b²-4ac)](b²-ac)/a³

Answer :-

a) 1/α + 1/β = -b/c

b)α³+ β³ = (-b³+3abc)/a³

c)1 /α³+ 1 / β³ = (-b³+3abc)×c³ or -b³c³+3abc⁴

d)α- β = [√(b²-4ac)] /a

e)α³- β³ = [√(b²-4ac)](b²-ac)/a³

Used formulae:-

  • (a+b)² = a²+2ab+b²

  • a³-b³ = (a-b)(a²+ab+b²)

  • (a-b)² = (a+b)²-4ab

  • a³+b³ = (a+b)³-3ab(a+b)

  • The Quadratic Polynomial P(x) = ax²+bx+c

  • Sum of the zeroes = -b/a

  • Product of the zeroes = c/a
Similar questions
Math, 2 months ago