Math, asked by shabhavya, 2 months ago

7. In a magic square each row, column and diagonal have the same sum. Check which
of the following is a magic square.

Attachments:

Answers

Answered by Anonymous
45

Given:

  • Two 3 × 3 Squares

To Find:

  • Weather they are magic squares or not?

Solution:

★ Now,

  • We know that a square is called a magic square when each row, column and diagonal have the same sum.

Squares :

A]

\begin{gathered}\begin{gathered}\begin{gathered} \large\boxed{\begin{array}{c | c | c} {\frak{ \pmb{5}}}&{ -  {\frak { \pmb{ 1}}}}&{ -  {\frak{ \pmb{4 }}}}\\ \dfrac{}{ - { \frak{ \pmb{5}}}}&\dfrac{}{ - {  \frak{ \pmb{ 2}}}}&\dfrac{}{ \:  \: {  \frak{ \pmb{ 7}}}}& \\ \dfrac{}{ \:  \:  \: { \frak{ \pmb{0}}}}& \dfrac{}{ \:  \: { \frak{ \pmb{3}}}}&\dfrac{}{ - {  \frak{ \pmb{ 3}}}}&\end{array}}\end{gathered}& \\ \end{gathered}\end{gathered}

~ Now let's Check weather it is a magic square or not

Sum of Rows :

➼ 5 + ( - 5 ) + 0 = 0 ✅

➼ - 1 + ( - 2 ) + 3 = 0✅

➼ - 4 + 7 + ( - 3 ) = 0✅

Sum of Columns :

➼ 5 - 1 - 4 = 0✅

➼ - 5 + ( - 2 ) + 7 = 0✅

➼ 0 + 3 + ( - 3 ) = 0✅

Sum of Diagonals :

➼ 5 + ( - 2 )+ ( - 3 ) = 0✅

➼ 0 + ( - 2 ) + ( - 4 ) ≠ 0❌

  • Hence it's not a magic square

B]

\begin{gathered}\begin{gathered}\begin{gathered} \large\boxed{\begin{array}{c | c | c} { \:  \: {\frak{ \pmb{1}}}}&{ -  {\frak { \pmb{ 10}}}}&{  \:  \:   {\frak{ \pmb{0 }}}}\\ \dfrac{}{ - \:   { \frak{ \pmb{4}}}}&\dfrac{}{ - {  \frak{ \pmb{ 3}}}}&\dfrac{}{  -  {  \frak{ \pmb{ 2}}}}& \\ \dfrac{}{  -  \: { \frak{ \pmb{6}}}}& \dfrac{}{    \: \:  \:  { \frak{ \pmb{4}}}}&\dfrac{}{ - {  \frak{ \pmb{ 7}}}}&\end{array}}\end{gathered}& \\ \end{gathered}\end{gathered}

~ Now let's Check weather it is a magic square or not

Sum of Rows :

➼ 1 + ( - 4) + ( - 6 ) = - 9✅

➼ - 10 - 3 + 4 = - 9✅

➼ 0 - 2 - 7 = - 9✅

Sum of Columns :

1 - 10 + 0✅

- 4 - 3 - 2 = - 9✅

- 6 + 4 - 7 = - 9✅

Sum of diagonals :

➼ 1 - 3 - 7 = - 9 ✅

➼ - 6 - 3 + 0 = - 9✅

  • Henceforth it's a magic square

Answered by rahulgurung9
0

Answer:

ycyxjvtyvchfhcty hfuzyxycxgb

Similar questions