Math, asked by ayush8044, 9 months ago

7. Show that the points (1, 7), (2, 4) and (5, 5)
are the vertices of an isosceles right angled
triangle.​

Answers

Answered by Anonymous
54

\Large{\underline{\underline{\mathfrak{\red{\bf{Solution}}}}}}

\Large{\underline{\mathfrak{\orange{\bf{Given}}}}}

  • Vertices of isosceles triangle (1,7) , (2,4) , (5,5)

\Large{\underline{\mathfrak{\orange{\bf{Prove}}}}}

  • Given point be are vertices of isosceles triangle

\Large{\underline{\underline{\mathfrak{\red{\bf{Explanation}}}}}}

Let,

ABC be a isosceles triangle.

Where, Vertices are A(1,7) , B(2,4) , C(5,5)

we prove here these vertices are isosceles triangle .

For this if length of any two side of triangle is equal , then we can say that our triangle is isosceles .

Distance Formula

\small\boxed{\tt{\green{\:Distance\:=\:\sqrt{(x-x1)^2+(y-y1)^2}}}}

Where,

  • (x,y) & (x1, y1) are any point.

Now, First calculate AB

\mapsto{\:AB\:=\:\sqrt{(1-2)^2+(7-4)^2}} \\ \\ \mapsto{\:AB\:=\sqrt{(-1)^2+(3)^2}} \\ \\ \mapsto{\:AB\:=\sqrt{1+9}} \\ \\ \mapsto{\:AB\:=\sqrt{10}}

Now, Calculate BC

\mapsto{\:BC\:=\:\sqrt{(2-5)^2+(4-5)^2}} \\ \\ \mapsto{\:BC\:=\:\sqrt{(-3)^2+(-1)^2}} \\ \\ \mapsto{\:BC\:=\:\sqrt{9+1}} \\ \\ \mapsto{\:BC\:=\:\sqrt{10}}

Now, Calculate CA

\mapsto{\:CA\:=\:\sqrt{(5-1)^2+(5-7)^2}} \\ \\ \mapsto{\:CA\:=\:\sqrt{(4)^2+(-2)^2}} \\ \\ \mapsto{\:CA\:=\:\sqrt{16+4}} \\ \\ \mapsto{\:CA\:=\:\sqrt{20}}

We can see here,

Distance between two side of triangle are equal .

  • AB = BC ≠ CA

\Large{\underline{\underline{\mathfrak{\red{\bf{Hence}}}}}}

  • We can say that this vertices of an isosceles triangle .

________________

Answered by tyrbylent
15

Answer:

Step-by-step explanation:

Attachments:
Similar questions