7. sin (x + y) = sin x cos y + cos x sin y
Answers
Answered by
1
The figure shows a rectangle with BG = 1 unit, so that in ∆BFG,
BF = CE = BG sin (x + y)
BF = CE = sin (x + y)
In ∆BDG,
BD = BG sin y
BD = sin y
And,
GD = BG cos y
GD = cos y
In ∆GDE,
DE = GD sin x
DE = sin x cos y
And,
⟨GDE = 180° - (90° + x)
⟨GDE = 90° - x
So, since ⟨BDG = 90°,
⟨BDC = 180° - ( ⟨GDE + ⟨BDG )
⟨BDC = x
Then, in ∆BCD,
CD = BD cos x
CD = cos x sin y
Now,
CE = CD + DE
sin (x + y) = sin x cos y + cos x sin y
Hence Proved!
From this figure it is also possible to prove the identity:
cos (x + y) = cos x cos y - sin x sin y
Attachments:
Similar questions