Math, asked by choudharyshubhampaga, 4 months ago


7. The sum of a numerator and denominator of a fraction is 18. If the denominator is
increased by 2, the fraction reduces to 1/3. Find the fraction.

Answers

Answered by suraj5070
230

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt 7. \:The\: sum \:of \:a\: numerator\: and\: denominator\: of\: a  \: fraction\\\tt  is\: 18. \: If\: the\: denominator\: is \:increased\: by \: 2, \\\tt \: the\: fraction\: reduces\: to\:\dfrac{1}{3}. Find\: the \:fraction.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 {\color {springgreen} \underline {\sf Let \:numerator \:be\: x}}

 {\color {springgreen} \underline {\sf Let\: denominator\: be \:y}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  • \implies {\boxed {\color {teal} {\bf x+y=18 \longrightarrow (i)}}}

\sf \bf \implies \dfrac{x}{y+2}=\dfrac{1}{3}

 \sf \bf \implies 3x=y+2

  • \implies {\boxed {\color {teal} {\bf x=\dfrac{y+2}{3} \longrightarrow (ii)}}}

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf The \:fraction \bigg(\dfrac{x}{y}\bigg)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

\implies {\color {indigo} {\bf x+y=18 \longrightarrow (i)}}

\implies {\color {indigo} {\bf x=\dfrac{y+2}{3} \longrightarrow (ii)}}

 {\underbrace {\overbrace {\color {orange} {\sf Substitute \:the \:value \:of \:equation \:(ii) \:in\:equation \:(i)}}}}

 \sf \bf \implies \dfrac{y+2}{3}+y=18

 \sf \bf \implies \dfrac{y+2+3y}{3}=18

 \sf \bf \implies y+2+3y=18\times 3

 \sf \bf \implies 4y+2=54

 \sf \bf \implies 4y=54-2

 \sf \bf \implies 4y=52

 \sf \bf \implies y=\dfrac{52}{4}

 \sf \bf \implies y=\dfrac{\cancel{52}}{\cancel{4}}

 \implies{\boxed {\boxed {\color {blue} {\sf \bf y=13}}}}

 {\underbrace {\overbrace {\color {orange} {\sf Substitute \:the \:value \:of \:y \:in\:equation \:(i)}}}}

 \sf \bf \implies x+y=18

 \sf \bf \implies x+13=18

 \sf \bf \implies x=18-13

 \implies{\boxed {\boxed {\color {blue} {\sf \bf x=5}}}}

 {\color {black}{\underbrace  \color{red}{\underline \color{red}{\sf \therefore The\:fraction \:\dfrac{x}{y} \:is\:\dfrac{5}{13}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {aqua} {\sf Identities}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

Answered by Anonymous
3

Answer:

⟹4y+2=54</p><p></p><p>\sf \bf \implies 4y=54-2⟹4y=54−2</p><p></p><p>\sf \bf \implies 4y=52⟹4y=52</p><p></p><p>\sf \bf \implies y=\dfrac{52}{4}⟹y=452</p><p></p><p>\sf \bf \implies y=\dfrac{\cancel{52}}{\cancel{4}}⟹y=452</p><p></p><p>\implies{\boxed {\boxed {\color {blue} {\sf \bf y=13}}}}⟹y=13</p><p></p><p>{\underbrace {\overbrace {\color {orange} {\sf Substitute \:the \:value \:of \:y \:in\:equation \:(i)}}}}Substitutethevalueofyinequation(i)</p><p></p><p>\sf \bf \implies x+y=18⟹x+y=18</p><p></p><p>\sf \bf \implies x+13=18⟹x+13=18</p><p></p><p>\sf \bf \implies x=18-13⟹x=18−13</p><p></p><p>\implies{\boxed {\boxed {\color {blue} {\sf \bf x=5}}}}⟹x=5</p><p></p><p>

Similar questions