7. Which of the following me
reproduction in laments
(A) Binary fission m) Cadea
(C) Fragmentation (D) Bedding
Lanco
Answers
Answer:
A) binary fusion
Explanation:
Fission, in biology, is the division of a single entity into two or more parts and the regeneration of those parts to separate entities resembling the original. The object experiencing fission is usually a cell, but the term may also refer to how organisms, bodies, populations, or species split into discrete parts.[1][2][3] The fission may be binary fission, in which a single organism produces two parts, or multiple fission, in which a single entity produces multiple parts.
Organisms in the domains of Archaea and Bacteria reproduce with binary fission. This form of asexual reproduction and cell division is also used by some organelles within eukaryotic organisms (e.g., mitochondria). Binary fission results in the reproduction of a living prokaryotic cell (or organelle) by dividing the cell into two parts, each with the potential to grow to the size of the original.
Fission of prokaryotes
The single DNA molecule first replicates, then attaches each copy to a different part of the cell membrane. When the cell begins to pull apart, the replicated and original chromosomes are separated. The consequence of this asexual method of reproduction is that all the cells are genetically identical, meaning that they have the same genetic material (barring random mutations). Unlike the processes of mitosis and meiosis used by eukaryotic cells, binary fission takes place without the formation of a spindle apparatus on the cell. Like in mitosis (and unlike in meiosis), the parental identity is lost.
Process of FtsZ-dependent fission
Binary fission in a prokaryote
FtsZ is homologous to β-tubulin, the building block of the microtubule cytoskeleton used during mitosis in eukaryotes.[4] FtsZ is thought to be the first protein to localize to the site of future division in bacteria, and it assembles into a Z ring, anchored by FtsZ-binding proteins and defines the division plane between the two daughter cells.[5][4] MinC and MinD function together as division inhibitors, blocking formation of the FtsZ ring. MinE stops the MinCD activity midcell, allowing FtsZ to take over for binary fission.[6]
More specifically, the following steps occur:
The bacterium before binary fission is when the DNA is tightly coiled.
The DNA of the bacterium has uncoiled and duplicated.
The DNA is pulled to the separate poles of the bacterium as it increases the size to prepare for splitting.
The growth of a new cell wall begins to separate the bacterium (triggered by FtsZ polymerization and "Z-ring" formation)[7]
The new cell wall (septum) fully develops, resulting in the complete split of the bacterium.
The new daughter cells have tightly coiled DNA rods, ribosomes, and plasmids; these are now brand-new organisms.
Studies of bacteria made to not produce a cell wall, called L-form bacteria, shows that FtsZ requires a cell wall to work. Little is known about how bacteria that naturally don't grow a cell wall divides, but it is thought to resemble the L-form's budding-like division process of extrusion and separation.[8][9]
Answer:
7. Which of the following me
reproduction in laments
(A) Binary fission m) Cadea
(C) Fragmentation (D) Bedding
Lanco