Math, asked by shiwanigahtori2, 1 month ago

7 ^ { x + 1 / x } find dy / dx? explain step by step please​

Answers

Answered by ajr111
33

Answer:

\mathrm{ 7^{\big(x+\frac{1}{x}\big)}.log7.\bigg(1 - \dfrac{1}{x^2}\bigg)}

Step-by-step explanation:

Given :

\mathrm{y = 7^{\big(x+\frac{1}{x}\big)}}

To find :

\mathrm{\dfrac{dy}{dx}}

Solution :

\longmapsto \mathrm{y = 7^{\big(x+\frac{1}{x}\big)}}

Applying log on both sides,

We know that,

\boxed{\mathrm{log\; a^m = m\: loga}}

\implies \mathrm{logy = {\big(x+\frac{1}{x}\big)}log7}

Differentiating with respect to x both sides,

We know that,

\boxed{\begin{array}{cc} \mathrm{\dfrac{d}{dx}(logx) = \dfrac{1}{x} }\\\\\mathrm{\dfrac{d}{dx}(x^n) = nx^{n-1}}\end{array}}

So, here,

\implies \mathrm{\dfrac{1}{y}\dfrac{dy}{dx} = {\bigg(1-\dfrac{1}{x^2}\bigg)}log7}

\implies \mathrm{\dfrac{dy}{dx} = ylog7\bigg(1 - \dfrac{1}{x^2}\bigg)}

\therefore \underline{\boxed{\mathbf{\dfrac{dy}{dx} = 7^{\big(x+\frac{1}{x}\big)}.log7.\bigg(1 - \dfrac{1}{x^2}\bigg)}}}

Extra information

Some basic differentiations :

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf x^n & \sf nx^{n-1} \\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x} \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx \end{array}} \\ \end{gathered}

Hope it helps!!

Please mark as brainliest and follo.w me ☺️

Answered by mathdude500
6

\purple{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\: {\bigg( 7\bigg) }^{x + \dfrac{1}{x} }

Let assume that

\rm :\longmapsto\:y =  {\bigg( 7\bigg) }^{x + \dfrac{1}{x} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx} {\bigg( 7\bigg) }^{x + \dfrac{1}{x} }

We know that

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {a}^{x} =  {a}^{x}loga \:  \:  \:  \:  \forall \: a \:  >  \: 0}}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx}= {\bigg( 7\bigg) }^{x + \dfrac{1}{x} } log7 \: \dfrac{d}{dx} \: \bigg[x + \dfrac{1}{x} \bigg]

We know that

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v \: }}}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{dy}{dx}= {\bigg( 7\bigg) }^{x + \dfrac{1}{x} } log7 \:  \: \bigg[\dfrac{d}{dx}x + \dfrac{d}{dx}\dfrac{1}{x} \bigg]

We know that

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\  \\  \bf \: and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx} \frac{1}{ {x}^{n} }  =  \frac{ - n}{ {x}^{n + 1} } \: }} \\

So, using these results, we get

\rm :\longmapsto\:\dfrac{dy}{dx}= {\bigg( 7\bigg) }^{x + \dfrac{1}{x} } log7 \:  \: \bigg[1 + \dfrac{ - 1}{ {x}^{1 + 1} } \bigg]

\rm :\longmapsto\:\dfrac{dy}{dx}= {\bigg( 7\bigg) }^{x + \dfrac{1}{x} } log7 \:  \: \bigg[1 -  \dfrac{1}{ {x}^{2} } \bigg]

 \\ \bf :\longmapsto\:\dfrac{dy}{dx}= {\bigg( 7\bigg) }^{x + \dfrac{1}{x} } log7 \:  \: \bigg[ \dfrac{ {x}^{2}  - 1}{ {x}^{2} } \bigg] \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\  \sf  {sin}^{ - 1}x & \sf  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \\\\ \sf  {tan}^{ - 1}x  & \sf  \dfrac{1}{1 +  {x}^{2} } \\\\ \sf  {sec}^{ - 1}x & \sf  \dfrac{1}{x \sqrt{ {x}^{2}  - 1} }      \end{array}} \\ \end{gathered}

Similar questions