Math, asked by vikramkumar363, 10 months ago

72
4.
A tangent having slope of
to the ellipse e ti = 1 intersects the major & minor axes in
3
points A & B respectively. If C is the centre of the ellipse, then the area of the triangle ABC is
(A) 12 sq. units
(B) 24 sq. units (C) 36 sq. units (D) 48 sq. units​

Answers

Answered by rahul123437
0

Option (B) 24 sq.units.

Given : A tangent having slope of -\frac{4}{3} to the ellipse \frac{x^2}{18}+\frac{y^2}{32}=1 intersects the major and minor axes in three points A, B and C respectively. If C is the centre of the ellipse, then the area of the ΔABC is : ?

To find : Area of the ΔABC.

Solution : From the given data we have slope and values of a and b.

Slope (m) =  -\frac{4}{3}

a = 18 ; b = 32

General equation :    y = mx + \sqrt{a^{2}m^2+b^{2}  }

Now substituting the respective values, it gives

                                  y = \frac{-4}{3} x+\sqrt{(18)^{2}\times(-\frac{4}{3})^2+(32)^2  }                                  

                                  y =- \frac{4}{3}x+\sqrt{(18)\times (\frac{16}{9})+ (32)}

                                  y =- \frac{4}{3}x+\sqrt{ 32+ 32}

                                  y =- \frac{4}{3}x+\sqrt{64}

                                  y =- \frac{4}{3}x+8   -----> (1)

To find the value of x and y :

To find the value of x :

Put y = 0 in equation (1)

      y =- \frac{4}{3}x+8

      0 =- \frac{4}{3}x+8

      - \frac{4}{3}x= -8

           x=\frac{8\times3}{4}

           x=\frac{24}{4}

           x = 6

Hence, the point is A(x, y) = (6, 0).

To find the value of y :

Put x = 0 in equation (1)

     y =- \frac{4}{3}\times0+8

     y =0+8

     y = 8

So, the point is B(x,y) = (0, 8).

Area of the triangle ABC = \frac{1}{2}\times\{base\}\times\{height\}

Base = 6  ;  Height = 8

Area of ΔABC = \frac{1}{2}\times\{6\}\times\{8\}

                       = \frac{1}{2}\times\{48\}

                       = 24 sq.units

Therefore, the area of ΔABC is 24 sq.units.

To learn more...

brainly.in/question/4157494                                          

Attachments:
Similar questions