Math, asked by depuhari0506, 11 months ago

72. Find the altitude AD of an isosceles triangle angle ABC with sides
2a, 2a and a, if AB = AC -​

Answers

Answered by lal4470
0

let ABC be a Δ with AB=AC

AB=2a AC=2a BC=a

using herons formula

perimeter of Δ = sum of all its sides

                         = 2a + 2a+a

                          = 5a

semi perimeter(s) =5a/2

herons formula= \sqrt{(s-a)(s-b)(s-c)

                         =\sqrt5a/2(5a/2-a/2)(5a/2-a/2)(5a/2-a)

                           = \sqrt5a/2(a/2)(a/2)(3a/2)

                            = a²/4√15

now we know that area of triangle = \frac12×b×h

⇒ a²/4√15=\frac12×a×h

⇒h=(2a²×√15)÷4a

⇒h=√15×a²/2

∴altitude ofΔ is (√15 × a²)/2

                               

Similar questions