75. A body is executing simple harmonic motion. At a displacement x from mean position, its potential energy is E, 2J and at a displacement y from mean position, its potential energy is E₂ 8J. The potential energy E (in Joule) at a displacement (x + y) from mean position is
Answers
Answer:
Given :-
A particle is describing uniform circular motion on a circle of radius of 5 cm with speed of 10 cm/s.
To Find :-
What is the centripetal acceleration.
Formula Used :-
\clubsuit♣ Centripetal Acceleration Formula :
\begin{gathered}\longmapsto \sf\boxed{\bold{\pink{a_c =\: \dfrac{v^2}{r}}}}\\\end{gathered}
⟼
a
c
=
r
v
2
where,
\sf a_ca
c
= Centripetal Acceleration
v = Velocity or Speed
r = Radius
Solution :-
Given :
Speed = 10 cm/s
Radius = 5 cm
According to the question by using the formula we get,
\dashrightarrow \sf a_c =\: \dfrac{(10)^2}{5}⇢a
c
=
5
(10)
2
\dashrightarrow \sf a_c =\: \dfrac{10 \times 10}{5}⇢a
c
=
5
10×10
\dashrightarrow \sf a_c =\: \dfrac{\cancel{100}}{\cancel{5}}⇢a
c
=
5
100
\dashrightarrow \sf a_c =\: \dfrac{20}{1}⇢a
c
=
1
20
\dashrightarrow \sf\bold{\red{a_c =\: 20\: cm/s^2}}⇢a
c
=20cm/s
2
\therefore∴ The centripetal acceleration is 20 cm/s².
Hence, the correct options is option no (D) 20 cm/s².
Answer:
Given :-
A particle is describing uniform circular motion on a circle of radius of 5 cm with speed of 10 cm/s.
To Find :-
What is the centripetal acceleration.
Formula Used :-
\clubsuit♣ Centripetal Acceleration Formula :
\begin{gathered}\longmapsto \sf\boxed{\bold{\pink{a_c =\: \dfrac{v^2}{r}}}}\\\end{gathered}
⟼
a
c
=
r
v
2
where,
\sf a_ca
c
= Centripetal Acceleration
v = Velocity or Speed
r = Radius
Solution :-
Given :
Speed = 10 cm/s
Radius = 5 cm
According to the question by using the formula we get,
\dashrightarrow \sf a_c =\: \dfrac{(10)^2}{5}⇢a
c
=
5
(10)
2
\dashrightarrow \sf a_c =\: \dfrac{10 \times 10}{5}⇢a
c
=
5
10×10
\dashrightarrow \sf a_c =\: \dfrac{\cancel{100}}{\cancel{5}}⇢a
c
=
5
100
\dashrightarrow \sf a_c =\: \dfrac{20}{1}⇢a
c
=
1
20
\dashrightarrow \sf\bold{\red{a_c =\: 20\: cm/s^2}}⇢a
c
=20cm/s
2
\therefore∴ The centripetal acceleration is 20 cm/s².
Hence, the correct options is option no (D) 20 cm/s².