Math, asked by mustaqeemareeb5104, 9 months ago

76^n - 66^n, where n is an integer greater than zero, is divisible by?

Answers

Answered by MaheswariS
0

\underline{\textsf{To find:}}

\textsf{Factor of}\;\mathsf{76^n-66^n}

\underline{\textsf{Solution:}}

\textsf{We know that, the identity}

\boxed{\mathsf{a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+...........+ab^{n-2}+b^{n-1})}}

\mathsf{76^n-66^n}\;\textsf{can be written as}

\mathsf{76^n-66^n=(76-66)(76^{n-1}+76^{n-2}(66)+...........+(76)(66)^{n-2}+(66)^{n-1})}

\mathsf{76^n-66^n=(10)(76^{n-1}+76^{n-2}(66)+...........+(76)(66)^{n-2}+(66)^{n-1})}

\implies\mathsf{76^n-66^n}\;\textsf{is a multiple of 10}

\therefore\mathsf{76^n-66^n}\;\textsf{is divisible by10}

Similar questions