Math, asked by somyadeeb33, 5 months ago

7log base 10 (15÷16)+6 log base 10 (8÷3) + 5 log base 10 (2÷5) + log base 10 (32÷25)=?​

Answers

Answered by anindyaadhikari13
9

Required Answer:-

Given to Evaluate:

 \rm \mapsto 7 log_{10} \bigg( \dfrac{15}{16} \bigg)  + 6 log_{10} \bigg( \dfrac{8}{3}  \bigg)  + 5 log_{10} \bigg( \dfrac{2}{5} \bigg)  +  log_{10} \bigg( \dfrac{32}{25}  \bigg)

Solution:

Given,

 \rm 7 log_{10} \bigg( \dfrac{15}{16} \bigg)  + 6 log_{10} \bigg( \dfrac{8}{3}  \bigg)  + 5 log_{10} \bigg( \dfrac{2}{5} \bigg)  +  log_{10} \bigg( \dfrac{32}{25}  \bigg)

 \rm = log_{10} \bigg( \dfrac{15}{16} \bigg)^{7}   +log_{10} \bigg( \dfrac{8}{3}  \bigg)^{6}   +  log_{10} \bigg( \dfrac{2}{5} \bigg) ^{5}   +  log_{10} \bigg( \dfrac{32}{25}  \bigg)

 \rm = log_{10} \bigg( \dfrac{ {15}^{7} }{ {16}^{7} }  \times  \dfrac{ {8}^{6} }{ {3}^{6} } \times  \dfrac{ {2}^{5} }{ {5}^{5} }  \times  \dfrac{32}{25}  \bigg)

 \rm = log_{10} \bigg( \dfrac{ {(3 \times 5)}^{7} }{ {2}^{4 \times 7} }  \times  \dfrac{ {2}^{3 \times 6} }{ {3}^{6} } \times  \dfrac{ {2}^{5} }{ {5}^{5} }  \times  \dfrac{ {2}^{5} }{ {5}^{2} }  \bigg)

 \rm = log_{10} \bigg( \dfrac{ {3 ^{7}  \times 5}^{7} }{ {2}^{28} }  \times  \dfrac{ {2}^{18} }{ {3}^{6} } \times  \dfrac{ {2}^{5} }{ {5}^{5} }  \times  \dfrac{ {2}^{5} }{ {5}^{2} }  \bigg)

 \rm = log_{10} \bigg( \dfrac{ {3 ^{7}  \times  \cancel{5}^{7} }}{ {2}^{28} \times   \cancel{{5}^{7}  } } \times  \dfrac{ {2}^{18 + 5 + 5} }{ {3}^{6} }   \bigg)

 \rm = log_{10} \bigg( \dfrac{ {3 ^{7} }}{ \cancel{ {2}^{28} }} \times  \dfrac{  \cancel{{2}^{28}} }{ {3}^{6} }   \bigg)

 \rm = log_{10} \bigg( \dfrac{ {3 ^{7} }}{ {3}^{6} }\bigg)

 \rm = log_{10} (3)

Hence, the simplified form is log(3)

Answer:

  • The simplified form is log(3)

Formula Used:

\rm \mapsto n \log_{x}(y) = log_{x}(y^{n})

\rm \mapsto log(x) + log(y) = log(xy)

Answered by Anisha5119
4

Answer:

HEYA mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions