Math, asked by deependra2243, 1 year ago

7log16/15+ 5log25/24+ 3log81/80

find it's value

Answers

Answered by Yuichiro13
119
Hey...

Refer to attachment

Hope it helps ^_^
Attachments:

Anonymous: :p
Answered by presentmoment
33

log 2 is the answer for \bold{7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)}

Given:

7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)

To find:

The value of 7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right) = ?

Solution :

Simplifying the question we get:

7(\log 16-\log 15)+5(\log 25-\log 24)+3(\log 81-\log 80)

Simplifying those number which can be used as square numbers like 16, 25, 81

7\left(\log 4^{2}-\log 15\right)+5\left(\log 5^{2}-\log 24\right)+3\left(\log 9^{2}-\log 80\right)

Placing the numbers we get:

7\left(\log 4^{2}-\log (3 \times 5)\right)+5\left(\log 5^{2}-\log (6 \times 4)\right)+3\left(\log 9^{2}-\log (8 \times 10)\right)

Simplifying the log values, after simplifying changing the values of log4 and log9 to 2log2 and 2log3.

7(2 \log 4-\log 3+\log 5)+5(2 \log 5-\log 6+\log 4)+3(2 \log 9-\log 8+\log 10)

Adding all the similar log value together we get:

28 \log 2-15 \log 2-12 \log 2-7 \log 3+5 \log 3+12 \log 3-7 \log 5+10 \log 5-3 \log 5

\begin{array}{l}{28 \log 2-27 \log 2-12 \log 3+12 \log 3-10 \log 5+10 \log 5} \\ {=\log 2}\end{array}

Therefore, after solving the values of log we find the value of the equation that is log2.  

Similar questions