Math, asked by Iwillaskaquestion, 4 months ago

7y-5/4y+2 = 8/7 verify also

Answers

Answered by EthicalElite
41

Given :

  •  \sf \dfrac{7y - 5}{4y + 2} = \dfrac{8}{7}

⠀ ⠀

To Find :

  • Value of y = ?

⠀ ⠀

Solution :

⠀ ⠀

We are given :

 \sf \dfrac{7y - 5}{4y + 2} = \dfrac{8}{7}

⠀ ⠀

To solve it, first we have to covert it in simple equation by cross multiplication method.

⠀ ⠀

By cross multiplication, we have :

 \sf : \implies (7y - 5) \times 7 = 8 \times (4y + 2)

 \sf : \implies 49y - 35 = 32y + 16

 \sf : \implies 49y - 35 - 32y - 16 = 0

 \sf : \implies 17y - 51 = 0

 \sf : \implies 17y = 51

 \sf : \implies y = \dfrac{51}{17}

 \sf : \implies y = \cancel{\dfrac{51}{17}}

 \sf : \implies y = 3

 \Large \underline{\boxed{\bf{y = 3}}}

⠀ ⠀

Hence, value of y = 3.

⠀ ⠀

Verification :

⠀ ⠀

LHS =  \sf \dfrac{7y - 5}{4y + 2}

Put value of y = 3 in equation :

 \sf : \implies \underline{\underline{\bf LHS}} =  \dfrac{7(3) - 5}{4(3) + 2}

 \sf : \implies \underline{\underline{\bf LHS}} =  \dfrac{21 - 5}{12 + 2}

 \sf : \implies \underline{\underline{\bf LHS}} =  \dfrac{16}{14}

 \sf : \implies \underline{\underline{\bf LHS}} =  \cancel{\dfrac{16}{14}}

 \sf : \implies \underline{\underline{\bf LHS}} =  \dfrac{8}{7}

⠀ ⠀

RHS =  \sf \dfrac{8}{7}

⠀ ⠀

As, LHS = RHS,

Hence, Verified.

Answered by Anonymous
116

Step-by-step explanation:

  \large{\frac{7y - 5}{4y + 2}}\huge{⤱} {\frac{8}{7}}

Cross multiply, we get ,

7 ( \: 7y \: - 5 )  \: =  \: 8(4y \:  +  \: 2)

49y \:  -  \: 35 \:  =  \: 32y \:  + 16

49y - 32y = 16 + 35

17y = 51

y \:  =  \:  \frac{51}{17}  \\  =  \:  3

Verification : For y = 3

 =  \frac{7y - 5}{4y + 2} \\  =  \frac{7 \times 3 - 5}{4 \times 3 + 2}

 =  \:  \frac{21 - 5}{12  + 2}  \\

 =  \frac{16}{14} \\

 =  \frac{8}{7}  =  \bold{rhs}

Similar questions