Math, asked by rinkuyadav8709, 7 months ago

8. A field is in the shape of a pentagon. The cost
of fencing the field at the rate of 42 per metre
is 6720. If the length of four sides are 28 m,
32 m, 40 m and 36 m, find the length of the
fifth side.​

Answers

Answered by SparklingThunder
0

\huge  \purple{ \underline{ \boxed{ \red{ \mathbb{ANSWER : }}}}}

 \red{ \textsf{Length of fifth side is  \orange{24 m .}}}

\huge  \purple{ \underline{ \boxed{ \red{ \mathbb{EXPLANATION : }}}}}

\large\green{ \underline{ \underline{ \mathbb{GIVEN : }}}}

 \orange{ \textsf{Cost of fencing per metre = Rs.42}}

 \orange{ \textsf{Total cost of fencing the field = Rs.6720 }}

 \orange{ \textsf{Length of four sides = 28 m , 32 m , 36 m , 40 m}}

\large\green{ \underline{ \underline{ \mathbb{FORMULA \:  USED : }}}}

 \orange{ \textsf{Perimeter of pentagon = Sum of all sides}}

 \orange{ \textsf{Total cost of fencing the field = Cost of fencing per metre x Perimeter of pentagon }}

\large\green{ \underline{ \underline{ \mathbb{SOLUTION : }}}}

 \red{ \textsf{Let x be the fifth side . }}

 \red{ \textsf{Therefore}}

 \red{ \textsf{Total cost of fencing the field = Cost of fencing per metre x Perimeter of pentagon }}

 \red{ \mathsf{ \implies 6720 = 42 \times (28 + 32 + 40 + 36 + x)}}

 \red{ \mathsf{ \implies 6720 = 42 \times (136 + x)}}

 \red{ \mathsf{ \implies  \frac{6720}{42}  = (136 + x)}}

 \red{ \mathsf{ \implies  160 = (136 + x)}}

\red{ \mathsf{ \implies x = 160 - 136}}

\red{ \mathsf{ \implies x = \: 24 \: m}}

Similar questions