Math, asked by jacobjeni25, 4 months ago

8. A ground is in the shape of parallelogram. The height of the
parallelogram is 14 metres and the corresponding base is 8 metres longe a
than its height. Find the cost of levelling the ground at the rate of
rupees 20 per sq. m.
la
0​

Answers

Answered by CɛƖɛxtríα
104

Given:

  • Height of the parallelogram (ground) = {\bold{14\:m}}
  • Base of the parallelogram (ground) = \bold{(8+Height)\:m}
  • Cost of levelling per m² = {\bold {20/-}}

To find:

  • The cost of levelling the ground.

Solution:

To find the cost of levelling, first we've to find the area of the ground. And it is given that the ground is in the shape of a parallelogram, it's area will be the product of its base and its height. Once we find the area, we can find the cost of levelling by multiplying the area with cost per \sf{{m}^{2}}. So, now let's do it !!

\normalsize{\boxed{\sf{Area\:of\: parallelogram=Base \times Height\:sq.units}}}

Now substitute the measures given in the formula.

\implies{\sf{(8+Height)\times 14}}

\implies{\sf{(8 + 14)\times 14}}

\implies{\sf{22 \times 14}}

\implies{\sf{308}}

\large\underline{\boxed{\rightarrow{\tt{Area\:of\:the\:ground=308\:{m}^{2}}}}}

Now, let's find the cost of levelling the ground.

\normalsize{\boxed{\sf{Cost\:of\: levelling=Cost\:per\:{m}^{2}\times Area\:of\:the\:ground}}}

\implies{\sf{20\times308}}

\implies\underline{\sf{6160\:\:rupees}}

Answer:

  • The cost of levelling the ground will be \large\underline{\boxed{\tt{\red{6160/-}}}}.

_____________________________________

Some important formulae for Area:

\normalsize{\sf{1)\:Triangle=\frac{1}{2}\times Base\times Height\:sq.units}}

\normalsize{\sf{2)\:Right-angled\: triangle=\frac{1}{2}ab\:sq.units}}

\normalsize{\sf{3)\:Quadrilateral=\frac{1}{2}\times d\times(h1+h2)\:sq.units}}

\normalsize{\sf{4)\:Trapezium=\frac{1}{2}h\times(a+b)\:sq.units}}

\normalsize{\sf{5)\:Rhombus=\frac{1}{2}\times d1\times d2\:sq.units}}

\normalsize{\sf{6)\:Rectangle=Length\times Breadth\:sq.units}}

\normalsize{\sf{7)\:Square={Side}^{2}\:sq.units}}

\normalsize{\sf{8)\:Circle=\pi{r}^{2}\:sq.units\:or\:\frac{1}{4}\pi{d}^{2}\:sq.units}}

\normalsize{\sf{9)\:Semi-circle=\frac{1}{2}\pi{r}^{2}\:sq.units}}

\normalsize{\sf{10)\:Quadrant\:of\:circle=\frac{1}{4}\pi{r}^{2}\:sq.units\:or\:\frac{\theta}{360°}\pi{r}^{2}\:sq.units}}

\normalsize{\sf{11)\:Scalene\: triangle=\sqrt{s(s - a)(s - b)(s - c)}\:sq.units}}

\normalsize{\sf{12)\:Equilateral\: triangle=\frac{\sqrt{3}}{4}{a}^{2}=\frac{1}{2}ah\:sq.units}}

\normalsize{\sf{13)\:Isosceles\: triangle=\frac{1}{2}\times b \times AD\:sq.units}}

____________________________________

Attachments:
Similar questions