Physics, asked by nedhanourinak2016, 3 months ago

8. A simple harmonic oscillator has an amplitude A and time period T. The time required by it to travel x =√3/2A to x = A is​

Answers

Answered by shadowsabers03
5

Let the displacement of the simple harmonic oscillator be given by,

\sf{\longrightarrow x=A\sin\left(\dfrac{2\pi}{T}\,t+\phi\right)}

Let \sf{t_1} and \sf{t_2} be the time taken by the oscillator to travel by a displacement of \sf{x=\dfrac{\sqrt3}{2}\,A} and \sf{x=A} respectively from mean position.

Then we get,

\sf{\longrightarrow \dfrac{\sqrt3}{2}\,A=A\sin\left(\dfrac{2\pi}{T}\,t_1+\phi\right)}

\sf{\longrightarrow\sin\left(\dfrac{2\pi}{T}\,t_1+\phi\right)=\dfrac{\sqrt3}{2}}

\sf{\longrightarrow\dfrac{2\pi}{T}\,t_1+\phi=\dfrac{\pi}{3}\quad\quad\dots(1)}

And,

\sf{\longrightarrow A=A\sin\left(\dfrac{2\pi}{T}\,t_2+\phi\right)}

\sf{\longrightarrow \sin\left(\dfrac{2\pi}{T}\,t_2+\phi\right)=1}

\sf{\longrightarrow\dfrac{2\pi}{T}\,t_2+\phi=\dfrac{\pi}{2}\quad\quad\dots(2)}

Subtracting (1) from (2),

\sf{\longrightarrow\dfrac{2\pi}{T}\left(t_2-t_1\right)=\dfrac{\pi}{2}-\dfrac{\pi}{3}}

\sf{\longrightarrow\dfrac{2\pi}{T}\left(t_2-t_1\right)=\dfrac{\pi}{6}}

\sf{\longrightarrow\underline{\underline{t_2-t_1=\dfrac{T}{12}}}}

This is the time taken by the oscillator to travel from \sf{x=\dfrac{\sqrt3}{2}\,A} to \sf{x=A.}

Similar questions