Math, asked by n5536015, 4 months ago

8. ΔACB ~ ΔAPQ. If BC=8cm, PQ=4cm, BA=6.5cm, AP=2.8cm, find CA and AQ.

Answers

Answered by vking10
3

Answer:

CA = 5.6cm

AQ=3.25 cm

Step-by-step explanation:

Given :-

- ∆ACB~∆APQ

- BC = 8cm, PQ = 4cm , BA = 6.5cm , AP = 2.8cm

To find :-

- CA & AQ

solution:-

- since , ∆ACB~∆APQ

-

 \frac{ac}{ap}  =  \frac{ bc}{pq}  =  \frac{ab}{aq}

- put the given values in the formula..

 \frac{ac}{2.8}  =  \frac{8}{4}  =  \frac{6.5}{aq}

- consider ,

 \frac{ac}{2.8}  =  \frac{8}{4}

- 4AC = 2.8 × 8

- 4AC = 22.4

ac =  \frac{22.4}{4}

- AC = 5.6 cm

- CA = 5.6cm...

- consider,

 \frac{8}{4}  =  \frac{6.5}{aq}

- 8 AQ= 6.5×4

- 8AQ = 26

aq =  \frac{26}{8}

- AQ= 3.25cm

*CA = 5.6cm & AQ= 3.25cm*

Similar questions