Math, asked by pavanyadav6974, 5 months ago

8. An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. find the 29 th term .​

Answers

Answered by Anonymous
4

\bf{\underline{Given}}

  • 3rd term = 12
  • last term = 106

\bf{\underline{To\:find}}

The 29th term.

\bf{\underline{Solution}}

\sf{\underline{We\:know}}

\sf{a_n = a + (n-1)d}

Therefore,

= \sf{a_3 = a + (3-1)d}

\sf{\implies 12 = a + 2d}

\sf{\implies a+2d = 12 \longrightarrow (i)}

Again,

= \sf{a_{50} = a + (50-1)d}

\sf{\implies 106 = a + 49d}

\sf{\implies a + 49d = 106 \longrightarrow (ii)}

\sf{\underline{From\:eq.(i)}}

= \sf{a+2d = 12}

\sf{\implies a = 12-2d}

\sf{\underline{Substituting\:the\:value\:of\:a\:in\:eq.(ii)}}

= \sf{a+49d = 106}

\sf{\implies 12-2d+49d = 106}

\sf{\implies 12 + 47d = 106}

\sf{\implies 47d = 106-12}

\sf{\implies 47d = 94}

\sf{\implies d = \dfrac{94}{47}}

\sf{\implies d = 2}

\sf{\underline{Putting\:the\:value\:of\:d\:in\:eq.(i)}}

\sf{a+2d = 12}

= \sf{a + 2\times 2 = 12}

\sf{\implies a + 4 = 12}

\sf{\implies a = 12-4}

\sf{\implies a = 8}

\sf{\underline{Therefore}}

\sf{First\:term\:(a)=8}

\sf{Common\:difference\:(d) = 2}

\sf{\underline{Now}}

\sf{a_{29} = 8 + (29-1)\times2}

= \sf{a_{29} = 8 + 28\times2}

= \sf{a_{29} = 8 + 56}

= \sf{a_{29} = 64}

\sf{\therefore The\:29th\:term\:is\:64}

\bf{\underline{Additional\:Information}}

\sf{Sum\:of\:nth\:term\:is\:calculated\:using\:formula:-}

\sf{S_n = \dfrac{n}{2}[2a + (n-1)d]}

Similar questions