8. Factorise each of the following
(1) 8a^3+ b^3 +12a+b + 6ab^2
(ii) 8a^3 - b^3 - 12a+b + 6ab^2
(iii) 1 - 64a^3 - 12a + 48a^2
(iv) 8p^3-12/5p^2+6/25p-1/125
Answers
Answered by
1
Answer:
I).8a^3+b^3+12a+b +6ab^2
Step-by-step explanation:
=(2a)^3+(b)^3+12a^2b+6ab^2
=(2a)^3+(b)^3+6ab (2a+b)
=(2a)^3+(b)^3+3(2a)(b) (2a+b)
using of(x+y)^3=x^3+y^3+3xy(x+y)
putting,x=2a, y=b
=(2a+b)^3
=(2a+b) (2a+b) (2a+b)
Answer:
ii).8a^3-b^3-12a+b+6ab^2
Step-by-step explanation:
=(2a-b)(4a²+2ab+b²)-6ab(2a-b)
=(2a-b)(4a²+2ab+b²-6ab)
=(2a-b)(4a²-4ab+b²)
=(2a-b){(2a)²-2×2a×b+(b)²}
=(2a-b)(2a-b)²
=(2a-b)(2a-b)(2a-b)
Answer:
iii).1−64a^3−12a+48a^2
=(1)^3−(4a) ^3−3(1)^2(4a)+3(1)(4a)^2
Suitable identities is x^3-y^3-3x^2y+3xy^2=(x-y)^3
•°•(1)^3-(4a)^3-3(1)^2(4a)+3(1) (4a)^2
=(1-4a)^3
Answered by
1
Step-by-step explanation:
thanks for free points
......
Similar questions
Social Sciences,
2 months ago
English,
6 months ago
Geography,
6 months ago
English,
11 months ago
Math,
11 months ago