Math, asked by gagandeepsingh09083, 6 months ago

8]. Find the distance between the points 12,3) and (4,1).​

Answers

Answered by prince5132
19

GIVEN :-

  • Ponts (12,3) and (4,1).

TO FIND :-

  • The distance between them.

SOLUTION :-

 \\ : \implies \displaystyle \sf  \sqrt{(x_{2} - x_{1}) ^{2} + ( y_{2} - y_{1}) ^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup Distance\ Formula \bigg \rgroup \\  \\  \\

 : \implies \displaystyle \sf  \sqrt{(12 - 4) ^{2} + (3 - 1) ^{2}  }  \\  \\  \\

 : \implies \displaystyle \sf  \sqrt{(8) ^{2}  + (2) ^{2} }  \\  \\  \\

 : \implies \displaystyle \sf  \sqrt{64 + 4}  \\  \\  \\

 : \implies \displaystyle \sf \sqrt{4(16 + 1)}\\  \\  \\

 : \implies \displaystyle \sf \sqrt{4(17)} \\ \\ \\

: \implies\underline{  \boxed{\displaystyle \sf 2\sqrt{17}\: units.}} \\  \\

\therefore \underline {\displaystyle \sf The \ Distance \ between \ the \ points \ is \ 2 \sqrt{17} \ units} \\ \\

_____________________

Distance Formula,

 \\ : \implies \displaystyle \sf  \sqrt{(x_{2} - x_{1}) ^{2} + ( y_{2} - y_{1}) ^{2} }

This Formula is used when we have to find the distance between the two points.

Answered by Anonymous
5

Given:

  • Points (12,3) and (4,1)

Find:

  • Distance between points (12,3) and (4,1)

Solution:

Let, points be P(12,3) and Q(4,1)

Now,

we, know that

 \boxed{\underline{\underline{\rm \to \purple{ PQ =  \sqrt{{(x_{2} - x_{1})}^{2} +  {(y_{2} - y_{1}) }^{2}   }  }}}}

where,

  • \sf x_1 = 12
  • \sf x_2 = 4
  • \sf y_1 = 3
  • \sf y_2 = 1

So,

\rm \implies PQ =  \sqrt{{(x_{2} - x_{1})}^{2} +  {(y_{2} - y_{1}) }^{2}   }

\rm \implies PQ =  \sqrt{{(12- 4)}^{2} +  {(3- 1) }^{2}}

\rm \implies PQ =  \sqrt{{(8)}^{2} +  {(2) }^{2}}

\rm \implies PQ =  \sqrt{64 +  4}

\rm \implies PQ =  \sqrt{68}

\rm \implies PQ =  \sqrt{4 \times 17}

  \underline{\boxed{\rm \to PQ =  2\sqrt{17}  units}}

Hence, the distance between the points (12,3) and (4,1) will be 2√17 units

Similar questions