Math, asked by kanishkas0805, 1 month ago


8. Find the value of a, for which point p, 2) is the midpoint of the line segment joining the points
Q(-5,4) and R(-1,0).​

Answers

Answered by Anonymous
6

{\large{\pmb{\sf{\underline{Correct \: Question...}}}}}

★ Find the value of a, for which point P(a,2) is the midpoint of the line segment joining the points Q(-5,4) and R(-1,0).

{\large{\pmb{\sf{\underline{Given \: that...}}}}}

★ P(a,2) is the midpoint of the line segment joining the points Q(-5,4) and R(-1,0).

{\large{\pmb{\sf{\underline{To \: find...}}}}}

★ The value of a

{\large{\pmb{\sf{\underline{Solution...}}}}}

★ The value of a = -3

{\large{\pmb{\sf{\underline{Using \: concept...}}}}}

\underline{\bigstar\:\textsf{Mid Point Formula\; :}}

• Mid Point formula is used to find the mid points on any line.

{\underline{\boxed{\frak{\quad \Bigg(\dfrac{x_1 + x_2}{2} \; or\; \dfrac{y_1 + y_2}{2} \Bigg)\quad}}}}

{\large{\pmb{\sf{\underline{Full \; Solution...}}}}}

{\underline{\boxed{\frak{\bull \Bigg(\dfrac{x_1 + x_2}{2} \; or\; \dfrac{y_1 + y_2}{2} \Bigg)}}}} \\ \\ :\implies \sf \Bigg(\dfrac{x_1 + x_2}{2} \; or\; \dfrac{y_1 + y_2}{2} \Bigg) \\ \\ :\implies \sf \Bigg(\dfrac{-5 + (-1)}{2} \; or\; \dfrac{4 + 0}{2} \Bigg) \\ \\ :\implies \sf \Bigg(\dfrac{-5-1}{2} \; or\; \dfrac{4 + 0}{2} \Bigg) \\ \\ :\implies \sf \Bigg(\dfrac{-6}{2} \; or\; \dfrac{4 + 0}{2} \Bigg) \\ \\ :\implies \sf \Bigg(\dfrac{-6}{2} \; or\; \dfrac{4}{2} \Bigg) \\ \\ :\implies \sf \Bigg(\cancel{\dfrac{-6}{2}} \; or\; \cancel{\dfrac{4}{2}} \Bigg) \\ \\ :\implies \sf -3 \: or \: 2 \\ \\ :\implies \sf Equating \: coordinate \: we \: get \: -3

The value of a is -3

Similar questions