Math, asked by adityarawat123321, 3 months ago

8. Find the value of lim = o(Sin(2x))^Tan_ (2x)?​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{lim_{x\to0}\{sin(2x)\}^{tan(2x)}}\\

\sf{\purple{Let\,\,\,2x=t}}\\\sf{\purple{so, \,\,\,as\,\,\,x\,\to\,0\,\,\implies\,t\,\to\,0}}

So, the limit becomes,

\sf{lim_{t\to0}\{sin(t)\}^{tan(t)}}\\

\sf{=lim_{t\to0}(e)^{tan(t)\,ln(sin(t))}}\\

\sf{=lim_{t\to0}(e)^{\dfrac{ln(sin(t))}{cot(t)}}}\\\\

\sf{=(e)^{lim_{t\to0}\dfrac{ln(sin(t))}{cot(t)}}}\\\\

This is 0/0 form, so, using l'hospital's rule,

\sf{=(e)^{lim_{t\to0}\dfrac{cot(t)}{-cosec^2(t)}}}\\\\

\sf{=(e)^{-\,lim_{t\to0}\dfrac{cos(t)sin^2(t)}{sin(t)}}}\\\\

\sf{=(e)^{-\,lim_{t\to0}\,cos(t)sin(t)}}\\\\

\sf{=(e)^{-\,0}}\\\\

\sf{=e^{0}}\\\\

\sf{=1}

Similar questions