8.
From the following molar conductivities at infinite dilution,
Am for Al2(SO4)3 = 858 S cm2 mol-'
An for NH,OH = 238.3 S cm mol-1
An for (NH),SO, = 238.4 S cm2 mol-1
Calculate Am for Al(OH)2
Answers
according to Kohlrausch's law, molar conductivity at infinite dilution can be broken into its ions.
so, for Al(OH)3 = for Al^+ + 2 × for (OH)^-
= 1/2 × for Al2(SO4)3 + 3 × for NH4(OH) - 3/2 × for (NH4)2SO4
given,
for Al2(SO4)3 = 858 S.cm²/mol
for NH4OH = 238.3 S cm²/mol
for (NH4)2SO4 = 238.4 S cm²/mol
now, for Al(OH)3 = 1/2 × 858 + 3 × 238.3 - 3/2 × 238.4
= 786.3 S cm²/mol
hence, option (3) is correct choice
Answer:
Molar conductivities at infinite dilution :
Λ
m
0
for Al
2
(SO
4
)
3
=858 Scm
2
mol
−1
Λ
m
0
for NH
4
OH=238.3 Scm
2
mol
−1
Λ
m
0
for (NH
4
)
2
SO
4
=238.4 Scm
2
mol
−1
Al
2
(SO
4
)
3
⇌2Al
3+
+3SO
4
2−
NH
4
OH⇌NH
4
+
+OH
−
(NH
4
)
2
SO
4
⇌2NH
4
+
+SO
4
2−
Al(OH)
3
⇌Al
3+
+3OH
−
2(Λ
m
0
Al(OH)
3
)=Λ
m
0
Al
2
(SO
4
)
3
+6(Λ
m
0
NH
4
OH)−3(Λ
m
0
(NH
4
)
2
SO
4
)
2(Λ
m
0
Al(OH)
3
)=858+6(238.3)−3(238.4)
=1572.6
Λ
m
0
Al(OH)
3
=
2
1572.6
=786.3 Scm
2
mol
−1
Hence, option C is correct.