Math, asked by foreverbarbie04, 3 months ago

8.
fü) If(10x+3y):(5x+2y)=9:5, let us show that, (2x+y): (x+2y)=11:13
Let us calculate what term should be added to both terms of the ratio 2:5 to make the
ratio 6:11

Answers

Answered by abhi569
51

Answer:

11/13   and   8/5

Step-by-step explanation:

\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5}   }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5}    }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5}   }

Let \dfrac{x}{y}=k,

\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2)  }\\\\\implies\sf{k=\dfrac{3}{5}}

   Hence,

\implies \sf{\dfrac{2x+y}{x+2y}  }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y}  }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)}  }

\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13}  }

Question 2:

Let the x should be added,

⇒ (2 + x)/(5 + x) = 6/11

⇒ 11(2 + x) = 6(5 + x)

⇒ 22 + 11x = 30 + 6x

⇒ 11x - 6x = 30 - 22

⇒ 5x = 8

⇒ x = 8/5

      8/5 should be subtracted

Answered by Anonymous
74

Answer:

Question No 1 :-

\longrightarrow If (10x + 3y) : (5x + 2y) = 9 : 5, let us show that (2x + y) : (x + 2y) = 11 : 13.

Given :-

\mapsto \sf (10x + 3y) : (5x + 2y) = 9 : 5.

Show That :

\mapsto \sf (2x + y) : (x + 2y) = 11 : 13.

Solution :-

\implies \sf 10x + 3y : 5x + 2y = 9 : 5

Then, we can write as :

\implies \sf \dfrac{10x + 3y}{5x + 2y} =\: \dfrac{9}{5}

By doing cross multiplication we get,

\implies \sf 5(10x + 3y) =\: 9(5x + 2y)

\implies \sf 50x + 15y =\: 45x + 18y

\implies \sf 50x - 45x =\: 18y - 15y

\implies \sf 5x =\: 3y

\implies \sf \dfrac{x}{y} =\: \dfrac{3}{5}

Let,

\longmapsto \sf \dfrac{x}{y} =\: \dfrac{3}{5} =\: k\: [where\: k \neq 0]

Then,

\sf x =\: 3k

\sf y =\: 5k

Now by taking L.H.S = (2x + y) : (x + 2y)

\sf (2 \times 3k + 5k) : (3k + 2 \times 5k)

\sf (6k + 5k) : (3k + 10k)

\sf 11{\cancel{k}} : 13{\cancel{k}}

\bold{\red{11 : 13}} = R.H.S

\leadsto \sf\boxed{\bold{\pink{(PROVED)}}}

_______________________________________

Question No 2 :-

\longrightarrow Let us calculate what term should be added to both terms of the ratio 2 : 5 to make the ratio 6 : 11.

Solution :-

Let, the number should be added be x

Now, according to the question,

\sf \dfrac{2 + x}{5 + x} =\: \dfrac{6}{11}

By doing cross multiplication we get,

\sf 11(2 + x) =\: 6(5 + x)

\sf 22 + 11x =\: 30 + 6x

\sf 11x - 6x =\: 30 - 22

\sf 5x =\: 8

\sf\bold{\red{x =\: \dfrac{8}{5}}}

\therefore \sf\bold{\dfrac{8}{5}} is should be added to the number.

Similar questions