Math, asked by WTriGGeredInsAAnw, 1 year ago

8. If 3 cot A = 4, check whether \frac{1-tan^{2}A}{1+tan^{2}A}
1+tan
2
A
1−tan
2
A

= cos2 A – sin 2 A or not.

Answers

Answered by brainer9657
8

{\huge{\star{\black{\bold{\boxed{\boxed{\boxed{Answer}}}}}}}}{\huge{\star}}

{\black{\huge{Explanation}}}

Let ∆ ABC in which B=90°

Let ∆ ABC in which B=90°We know that , cot function is the reciprocal of tan function and it is written as

cot(a) =  \frac{ab}{bc}  =  \frac{4}{3}

Let AB = 4k and BC = 3k, where k is a positive real number .

Let AB = 4k and BC = 3k, where k is a positive real number .According to the pythagoream theorem.

 {ac}^{2}  =  {ab }^{2}  +  {bc}^{2}  \\  {ac}^{2}   = (4k) {}^{2}  + (3k) {}^{2}  \\ ac {}^{2}  = 16k {}^{2}  + 9k {}^{2} \\ ac {}^{2}  = 25k {}^{2}  \\ ac = 5k

Now apply the values corresponding to the ratios .

 \tan(a)  =  \frac{bc}{ab }   =  \frac{3}{4}  \\  \sin(a)  =  \frac{bc}{ac}  =  \frac{3}{5}  \\  \cos(a)  =  \frac{ab}{ac} =  \frac{4}{5}  \\

Now compare the left hand side (LHS) with the right hand side (RHS)

LHS

 =  \frac{1 -  tan {}^{2} a }{1 + tan {}^{2}a }  =  \frac{1 - ( \frac{2}{4}) {}^{2}  }{1 + ( \frac{2}{4}) {}^{2}  }  =  \frac{1  -  \frac{9}{16} }{4 +  \frac{9}{16} }  =  \frac{7}{25}

RHS

 = cos {}^{2} a - sin {}^{2} a = ( \frac{4}{5})  {}^{2}  - ( \frac{3}{5} ) {}^{2}  =  \frac{16}{25}  -  \frac{9}{25}  =  \frac{7}{25}  \\

Since both the LHS & RHS

 =  \frac{7}{25}

RHS=LHS

RHS=LHShence,

 \frac{1 - tan {}^{2}a }{1 + tan {}^{2}a }  = cos {}^{2} a - sin {}^{2}a

is proved!

<marquee>✨✨HOPE IT HELPS✨✨</marquee>

<marquee>✨✨ FOLLOW ME✨✨</marquee>

<marquee>✨✨ BRAINER9657✨✨</marquee>

Answered by FutureBrainlyMod
9

{\huge{\star{\pink{\bold{\boxed{\boxed{\boxed{Answer}}}}}}}}{\huge{\star}}

now, compare the LHS with the RHS

LHS

=1-tan²a/1+tan²a=1-(2/4)²/1+(2/4)²

=1-9/16 /4+9/16=7/25

since , both LHS & RHS = 7/25

RHS = LHS hence,

1-tan²a/1+tan²a = cos²a-sin²a

is proved!!!

<marquee>✨✨HOPE IT HELPS✨✨</marquee>

Attachments:
Similar questions