Math, asked by smahamud159, 10 months ago

prove it :sinΘsin(60-Θ)sin(60+Θ)=(sin3Θ)/4

Answers

Answered by Sharad001
39

Question :-

Prove that :

 \to \sin \theta \:  \sin(60 -  \theta) \:  \sin(60 +  \theta) =  \frac{ \sin3 \theta}{4}  \\

Formula used :-

 \sf \star \boxed{   \bf \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y) }\\  \\  \star \boxed{  \bf\sin(x + y) =  \sin  x \cos y +  \cos x \sin y} \\  \\  \star\boxed{  \bf\sin(x  -  y) =  \sin  x \cos y  -   \cos x \sin y} \:  \\  \:  \\  \star \boxed{ \sin3 \theta = 3 \sin \theta - 4 { \sin}^{3}  \theta}

Proof :-

Taking left hand side -

 \to \: \sin \theta \:  \sin(60 -  \theta) \:  \sin(60 +  \theta) \:  \\  \\ \bf  Apply \:  the \:  given  \: formula  \:  \\  \\  \to  \sin \theta \: ( \sin60 \cos \theta -  \cos60 \sin \theta) \\  \:  \:  \:  \:  \times ( \sin60 \cos \theta -  \cos60 \sin \theta) \\  \because \bf {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\  \therefore \\  \to \sin \theta  \bigg \{ {( \sin60 \cos \theta)}^{2}  -  {( \cos60 \sin \theta)}^{2}  \bigg\} \\  \because \boxed{  \sin60 =  \frac{ \sqrt{3} }{2}  \: and \:  \cos60 =  \frac{1}{2} } \\  \therefore \\  \to \:  \sin \theta \bigg \{ \frac{3}{4}  { \cos}^{2}  \theta -  \frac{1}{4}  { \sin}^{2}  \theta \bigg \} \\  \\   \because \boxed{  { \cos}^{2}  \theta = 1 -  { \sin}^{2}  \theta} \\  \therefore \\  \to \:  \sin \theta \bigg \{ \frac{3}{4} (1 -  {  \sin}^{2}  \theta) -  \frac{1}{4}  { \sin}^{2}  \theta) \bigg \} \\  \\  \to \:  \sin \theta \bigg \{ \frac{3}{4}  -  \frac{3}{4}  { \sin}^{2}  \theta -  \frac{1}{4}  { \sin}^{2}  \theta \bigg \} \\  \\  \to \sin \theta \bigg \{ \frac{3}{4}  -  { \sin}^{2}  \theta \bigg \} \\  \:  \\  \to \:  \sin \theta \bigg \{ \frac{3 - 4  { \sin}^{2} \theta }{4}  \bigg \} \\  \\  \to \:  \frac{3 \sin \theta - 4 { \sin}^{3} \theta }{4}  \\  \\  \because \boxed{  \sin3 \theta = 3 \sin \theta - 4 \:  { \sin}^{3}  \theta} \\  \therefore \:  \\  \to \:  \frac{ \sin3 \theta}{4}  \\  \\ \mathcal{ L.H.S = R.H.S  \: } \\    \bf \: Hence  \: Proved  \:

Answered by RvChaudharY50
134

\Large\underline\mathfrak{Question}

 \sf \red{ prove} :  \green{sinΘsin(60-Θ)sin(60+Θ)= \frac{1}{4} (sin3Θ)}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

 \red{1)}   \blue{\boxed{\bf \: sin (A + B) sin (A - B) = sin^{2}  A - sin^{2} B}}

 \red{2)} \: \orange{\boxed{\bf \: sin60 \degree =  \dfrac{ \sqrt{3} }{2}}}

 \red{3)} \pink{\boxed{\bf3sin A - 4sin^{3} A=sin3A}}

_____________________________

\large\star{\underline{\tt{\red{Answer}}}}\star

  \green{\rm \: solving\:L.H.S. : -  -}

\red\leadsto\sf \: sinΘsin(60-Θ)sin(60+Θ) \\  \\ \red\leadsto\sf \: sinΘ[sin(60-Θ)sin(60+Θ)] \\  \\\red\leadsto\sf \:  sinΘ[sin^{2}60 - sin^{2}Θ] \\  \\\red\leadsto\sf \:sinΘ[( \frac{ \sqrt{3}}{2})^{2}   - sin^{2}Θ] \\  \\ \red\leadsto\sf sinΘ[ \frac{3}{4}  - sin^{2}Θ] \\  \\ \red\leadsto\sf \:  \frac{3sinΘ}{4} - sin^{3}Θ \\  \\ \red\leadsto\sf \:  \frac{(3sinΘ - 4sin^{3}Θ)}{4} \\  \\\red\leadsto\sf \:  \frac{sin3Θ}{4} \\  \\ \red\leadsto\sf \:  \pink{\large\boxed{\boxed{\bold{\frac{1}{4}[sin3Θ]= \purple{RHS}}}}}

 \huge\large\red{\boxed{\tt\blue{Hence} \: \orange,\green{Proved}}} \:

Similar questions