Math, asked by sayadsimnan008, 8 months ago

8. If a - b = 0.9 and ab = 0.36; find :
(i) a+b
(ii) a^2-b^2

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{a+b=\pm1.5}}}

\green{\tt{\therefore{a^{2}+b^{2}=1.35}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt:  \implies a - b = 0.9 \\  \\ \tt:  \implies ab = 0.36 \\  \\ \red{\underline \bold{To \: Find : }}  \\  \tt:  \implies a + b =?  \\  \\ \tt:  \implies  {a}^{2}  -  {b}^{2}  = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a - b = 0.9 \\  \\ \tt:  \implies a = 0.9 + b -  -  -  -  - (1) \\  \\  \tt:  \implies ab = 0.36 -  -  -  -  - (2) \\   \\  \text{Putting \: value \: of \: a \: in \: (2)}\\ \tt:  \implies (0.9 + b) \times b =  0.36 \\  \\ \tt:  \implies 0.9b +  {b}^{2} = 0.36 \\  \\ \tt:  \implies  100{b}^{2}  + 90b - 36 = 0 \\  \\ \tt:  \implies b =  \frac{ - b \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\\tt:  \implies b =  \frac{ - 90 \pm \sqrt{8100 - 4 \times 100 \times 36} }{2 \times 100}  \\  \\ \tt:  \implies b =  \frac{ - 90 \pm \sqrt{8100 + 14400} }{200}  \\  \\ \tt:  \implies b =  \frac{ - 90 \pm \sqrt{22500} }{200}  \\  \\ \tt:  \implies b =  \frac{ - 90  \pm150}{200}  \\  \\  \green{\tt:  \implies b = 0.3 \: and \:  - 1.2} \\  \\  \text{Putting \: value \: of \: b = 0.3} \\  \\ \tt:  \implies a = 0.9+ 0.3 \\  \\ \green{\tt:  \implies a = 1.2} \\  \\  \text{Putting \: value \: of \: b =  - 1.2} \\  \\ \tt:  \implies a = 0.9 + ( - 1.2) \\  \\  \green{\tt:  \implies a = - 0.3}

 \bold{For \: a + b} \\ \tt:  \implies a + b =\pm( 1.2 + 0.3) \\  \\  \green{\tt:  \implies a + b = \pm1.5} \\  \\  \bold{For \:  {a}^{2}  -  {b}^{2} }  \\ \tt:  \implies  {a}^{2}  -  {b}^{2}  =  (({1.2})^{2} -  {(0.3})^{2})   \\  \\ \tt:  \implies  {a}^{2}  -  {b}^{2}  =   (1.44 - 0.09) \\  \\  \green{\tt:  \implies  {a}^{2}  -  {b}^{2}  =1.35}

Answered by Anonymous
61

\red{\underline{\underline{\bold{Answer:}}}}

\purple{\sf{\therefore{a+b=1.5}}}

\purple{\sf{\therefore{a^{2}+b^{2}=1.35}}}

  • Given

➠ a - b = 0.9

➠ ab = 0.36

  • To find :

➠ a + b = ?

➠ a^{2} - b^{2} = ?

  • According to given question :

 \bold{By \:given \: question} \\  \implies  a - b = 0.9 \\  \\   \implies a = 0.9 + b -  -  -   (1)\\  \\    \implies ab = 0.36 -  -  - (2) \\   \\  {Putting \: value \: of \: a }\\ \implies (0.9 + b) \times b =  0.36 \\  \\\implies 0.9b +  {b}^{2} = 0.36 \\  \\  \implies b^{2}+0.9b-0.36=0\\\\ \implies (b-0.3)(b+1.2)=0 \\  \\  \implies b = 0.3 \: and \:  - 1.2 \\\\   \implies a =0.9\:and - 0.3

  \implies a + b  \\  \\  \implies ( 1.2 + 0.3)=1.5\\  \\  \bold{For \: another\:question: }  \\  \implies  {a}^{2}  -  {b}^{2}    \\  \\   \implies   (1.2^{2} - 0.3^{2})=(1.44-0.09) \\  \\  \implies  {a}^{2}  -  {b}^{2}  =1.35

Similar questions