Math, asked by nafisahmad56312, 10 months ago

8 In the adjoining figure, AB = 4 m and ED = 3 m.
If sin a = 3/5; and cos B = 12/13, find the length of BD.
Hint. sin a = 3/5= tan a =3/4
Also cos B = 12/13 = tan B = 5/12


Answers

Answered by amirgraveiens
30

Length of BD = 12.53 m

Step-by-step explanation:

Given:

Here,

AB = 4 m and ED = 3 m.

sin\alpha = \frac{3}{5} , cos B= \frac{12}{13}

cos B=\frac{12}{13}\Rightarrow tan B=\frac{5}{12}

To find:

Length of BD = ?

Solution:

sin\alpha = \frac{3}{5}

\frac{AB}{AC} =\frac{3}{5}

\frac{4}{AC} =\frac{3}{5}

AC =\frac{5\times 4}{3}

AC= \frac{20}{3}

AB^2+BC^2=AC^2

BC^2=AC^2-AB^2

       = (\frac{20}{3})^2 +(4)^2

       =\frac{400}{9}+16

       =\frac{400-144}{9}

BC^2=\frac{256}{9}

BC=\sqrt{\frac{256}{9} }

BC=\frac{16}{3}

Cos B = \frac{12}{13} \Rightarrow tab B =\frac{5}{12}

\frac{ED}{CD} =\frac{5}{12}

\frac{3}{CD} =\frac{5}{12}

CD = \frac{3\times 12}{5}

CD =\frac{36}{5}

Therefore, BD = BC + CD

                        = \frac{16}{3} +\frac{36}{5}

                        = \frac{16\times 5+3\times 36}{5\times 3}

                        = \frac{188}{15}

                        = 12.53 m

Length of BD = 12.53 m

Similar questions