Math, asked by naitalisheth, 10 months ago

8 men and 12 women can finish a piece of work in 10days. While 6 men and 8 women can
finish it in 14 days. Find the time taken by I man alone and that by 1 woman alone to finish the
work​

Answers

Answered by TheVenomGirl
21

{ \huge{ \underline{ \underline{ \texttt{ \blue{AnSwer:- }}}}}}

Let us assume the time taken by man be x days and time taken by woman be y days respectively.

So,

☢ Work done in 1 day :

  • 1 Man = 1/x
  • 1 Woman = 1/y

The eqn becomes,

 \longrightarrow \sf \:  \:  \dfrac{8}{x}  +  \dfrac{12}{y}  =  \dfrac{1}{10}  -  -  -  - (1)

And,

 \longrightarrow \sf \:  \:  \dfrac{6}{x} +  \dfrac{8}{y}   =  \dfrac{1}{14}  -  -  -  - (2)

Again, Let us consider u=1/x & v=1/y

 \longrightarrow \sf \:  \: 8u + 12v =  \dfrac{1}{10}  -  -  -  - (3)

\longrightarrow \sf \:  \: 6u + 8v =  \dfrac{1}{14}  -  -  -  - (4)

Now,

Multiply :

  • eqn(3) by (2)
  • eqn(4) by (3)

\longrightarrow \sf \:  \: 16u + 24v = \dfrac{2}{10} -  -  -  - (5)

\longrightarrow \sf \:  \: 18u + 24v =  \dfrac{3}{14}  -  -  -  - (6)

Also, subtract eqn(5) as well as eqn(6),

\longrightarrow \sf \:  \: - 2u =   - \dfrac{3}{14}  +  \dfrac{2}{10}  \\  \\  \\ \longrightarrow \sf \:  \: - 2u =  \dfrac{ - 3 \times 10 + 2 \times 14 \: }{140} \\  \\  \\  \longrightarrow \sf \:  \: - 2u =  \dfrac{ - 30 + 28}{140}  \\  \\  \\ \longrightarrow \sf \:  \: - 2u =  \dfrac{ - 2}{140}  \\  \\  \\ \longrightarrow \sf \:  \:u =  \dfrac{  \cancel- 2}{140}  \times  \dfrac{1}{  \cancel- 2} \\  \\   \\ \longrightarrow \sf \:  \:u =  \dfrac{1}{140}

Substitute the value of u in eqn(5)

\longrightarrow \sf \:  \:16u + 24v =  \dfrac{2}{10}  \\  \\  \\ \longrightarrow \sf \:  \:16 \times  \dfrac{1}{140} + 24v =  \dfrac{2}{10}   \\  \\  \\ \longrightarrow \sf \:  \: \dfrac{4}{35}  + 24v =  \dfrac{1}{5} \\  \\  \\ \longrightarrow \sf \:  \:24v =  \dfrac{1}{5}  -  \dfrac{4}{35} \\  \\  \\ \longrightarrow \sf \:  \:24v =  \dfrac{1 \times 7  -  4}{35}  \\  \\  \\  \longrightarrow \sf \:  \:24v =  \dfrac{3}{35}  \\  \\  \\ \longrightarrow \sf \:  \:v =  \dfrac{3}{35}  \times  \frac{1}{24}  \\  \\  \\ \longrightarrow \sf \:  \:v =  \dfrac{1}{280}

As we have considered :

  • u = 1/x

\longrightarrow \sf \:  \: \dfrac{1}{140}  =  \dfrac{1}{x}  \\  \\  \\ \longrightarrow \sf \:  \:{ \underline{ \boxed{ \texttt{ \red{x = 140}}}}} \:  \bigstar

  • v = 1/y

\longrightarrow \sf \:  \: \dfrac{1}{280} =  \dfrac{1}{y}   \\  \\  \\ \longrightarrow \sf \:  \:{ \underline{ \boxed{ \texttt{ \pink{y = 280}}}}} \:  \bigstar

Therefore, a man complete the work in 140 days while a woman can complete the work in 280 days.

━━━━━━━━━━━━━━━━

Similar questions