Math, asked by Usga, 8 months ago

8 men and 6 boys can finish a piece of work in one day while 2 men and 3 boys can finish it in 3 days. Find the time taken by one man alone and that by one boy alone to finish the work.

Answers

Answered by SwiftTeller
142

Appropriate Question:

  • 8 men and 6 boys can finish a piece of work in one day while 2 men and 3 boys can finish it in 3 days. Find the time taken by one man alone and that by one boy alone to finish the work.

Solution:

Let one man alone take x days to finish a piece of work and one boy alone can finish it in y days.

 \sf{one \: man's \: one \: day's \: work =  \frac{1}{x}  \:  \:  and}  \sf{one \: boy's \: one \: day's \: work =  \frac{1}{y} }

Now,

\sf{8 \: man's \: 1 \: day's \: work =  \frac{8}{x} \: and \: 6 \: boy's \: 1 \: day's \: work =   \frac{6}{y} }

According To The Statement,

\sf{ \frac{8}{x} +  \frac{6}{y}  = 1 } \:  \:  \:  \:  \: ....(i) \\

\sf{Now,  \: 2 \:  Man's  \:  \: 1 d ay's \:  work =  \frac{2}{x}  \: and  \: 3 \: boy's  \: 1 \: day's \: work =  \frac{3}{y} }

: \implies \sf{{ \frac{2}{x}  +  \frac{3}{y}  =  \frac{1}{3} }}  \:  \:  \:  \:  \:  \:  \:  \: ....(ii)\\

 \sf{Let \:  \frac{1}{x}  = a \: and \:  \frac{1}{y} = b } \\

Then, 8a + 6b = 1 ⠀⠀....(iii)

 \longmapsto\sf{2a + 3b =   \frac{1}{3} }  \\ \\  \longmapsto\sf{6a + 9b = 1} \:  \:  \:  \:  \:  ...(iv)

Multiplying (iii) by 3 and (iv) by 2, we get

 \longmapsto\sf{24a + 18b \:  = 3} \:  \:  \:  \:  \:  \:  \: ...(v) \\  \\  \longmapsto\sf{12a + 18b  = 2} \:  \:  \:  \: ...(vi)

Subtracting (vi) From (v), we get,

 \longmapsto\sf{12a = 1} \\  \\  \longmapsto\sf{a =  \frac{1}{12} }

 \longmapsto\sf{Putting  \: the \:  value  \: of \:  a  =  \frac{1}{12} in \: (iv), \: we \: get,  } \\  \\  \longmapsto\sf{6\bigg[ \frac{1}{12} \bigg]+9b=1 } \\  \\ \longmapsto\sf{ \frac{1}{2 }   + 9b = 1}  \\  \\ \longmapsto\sf{9b = 1  -  \frac{1}{2}  =  \frac{1}{2} } \\  \\  \longmapsto\sf{b =  \frac{1}{18} }

Thus,

 \longmapsto\sf{a =  \frac{1}{12} } \\  \\  \longmapsto\sf{ \frac{1}{x}  =  \frac{1}{12} } \\  \\  \longmapsto\sf{x = 12  \:  \:  \:  \:  \: and \: b =  \frac{1}{18} }   \\  \\  \longmapsto\sf{ \frac{1}{y} =  \frac{1}{18}  } \\  \\  \longmapsto\sf{y = 18}

Hence, one man alone can finish the piece of work in 12 days and one boy alone can finish the work in 18 days.

Similar questions