8. Prove that (i) if P(A/B) = 1 then P(ABC) = P(BC)
(ii) if P(A/B) = P(A) then P(A/B) = P(Ā)
Answers
Answered by
3
(ii) If P(A/B) = P(A), then prove that
P(Ā/B) = P(Ā).
Proof :
Here, B = ĀB + AB
∵ ĀB and AB are mutually exclusive,
P(B) = P(ĀB) + P(AB)
⇒ P(ĀB) = P(B) - P(AB) .....(1)
Now, P(Ā/B)
= P(ĀB)/P(B), where P(B) ≠ 0
= {P(B) - P(AB)}/P(B) [ by (1) ]
= 1 - P(AB)/P(B)
= 1 - P(A/B)
= 1 - P(A) [ ATQ ]
= P(Ā)
⇒ P(Ā/B) = P(Ā)
Hence, proved.
Similar questions