(8) seco + tano =
cos e/
1-sin e
Answers
Answered by
3
Answer:
You use the trigonometric identity
Step-by-step explanation:
sece+ tan e =LHS
so, 1/cos e + sin e/ cos e
=1+sin e/cos e
squaring and taking roots
root of (1 + sin e) squared/cos squared e
= root of (1+ sine)(1+ sine e)/1- sin squared e
... sin squared e + cos squared e = 1
and (a square - b square) = ( a+b) (a-b)
so root of (1+ sin e)( 1+ sin e)/( 1+ sin e)( 1- sin e)
= root of ( 1+ sin e)/ (1 - sin e)=LHS
RHS= cos e/1- sine
taking roots and squares again,
root of cos squared e /(1- sin e) squared
= (1 -sin e)(1 + sin e) /( 1 - sine)(1 - sin e)
= 1 +sin e / 1 -sin e
so, LHS = 1+ sine/ 1- sin e
RHS = 1 + sin e/ 1- sin e
HENCE, LHS =RHS
Proved
Similar questions