8) tana + tanß
cota + cotp
tana tanß
Answers
Answered by
3
Step-by-step explanation:
tanA+tanB
=tanAtanB
Let’s consider the LHS,
LHS =\frac{\tan A+\tan B}{\cot A+\cot B}=
cotA+cotB
tanA+tanB
\Rightarrow \frac{\tan A+\tan B}{\frac{1}{\tan A}+\frac{1}{\tan B}}⇒
tanA
1
+
tanB
1
tanA+tanB
\left[{since}, \cot \theta=\frac{1}{\tan \theta}\right][since,cotθ=
tanθ
1
]
\Rightarrow \frac{\tan A+\tan B}{\frac{\tan A+\tan B}{\tan A \tan B}}⇒
tanAtanB
tanA+tanB
tanA+tanB
\Rightarrow \tan A \tan B⇒tanAtanB
= RHS
Hence proved.
Similar questions