Math, asked by ayushkesarwani035, 5 months ago

8. The ages of A and B are in the ratio 5:7. Four years later, the sum of their ages will be 56 years. What
are their present ages?​

Answers

Answered by prabakarvrl
1

Answer:

The ages of Rahul and Haroon are in the ratio 5:7

Let Rahul’s present age=5x

Haroon present age=7x

Four years later the sum of their ages will be 56 years. So according to the condition,

(5x+4)+(7x+4)=56

12x+8=56

12x=56–8

12x=48

x=48/12

x=4

Therefore Rahul’s present age =5*4=20years

Haroon’s present age=7*4=28years

pls Mark it Braillent friend and verified answer friend

Answered by Sitααrα
4

Given :

  • Age of A and B are in the ratio of 5 : 7. After four years, the sum of their ages will be 56 years. We need to find the present ages of A and B .

❖ Solution :

  • Let's assume the present age of A = 5x years.

  • Let's assume the present age of B = 7x years.

✰ After Four years :

  • Age of A = (5x + 4) years

  • Age of B = (7x + 4) years

 \\  \\\underline{ \underline{ \mathfrak{ \pmb{ \: ✤  \: \:  According  \:  \: to \: \:   the \:  \:  Question : }}}} \\  \\

 \tt \: (5x + 4) + (7x + 4) = 56 \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt  :  \implies \: 5x + 4 + 7x + 4 = 56 \\  \\  \\  \tt :  \implies \: 12x + 8 = 56 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt  : \implies \: 12x = 56 - 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt  : \implies \: 12x = 48 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt :  \implies \: x =  \frac{48}{12} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\    : \implies \: { \underline{ \boxed{ \mathfrak{ \pmb{ \purple{x = 4}}}}}}  \:  \:  \:  \:  \pink{\bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\

\pmb{ \sf{✰ \:  The \:  present  \: age  \: of  \: A \: }} =   \tt{\: 5x \:  \:  years }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \: = \tt {(5 × 4 ) \: years}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ={ \mathfrak{ \pmb { 20  \:  \: years}}} \\  \\

\pmb{ \sf{✰ \:  The \:  present  \: age  \: of  \: B \: }} =   \tt{\: 7x \:  \:  years }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \: = \tt {(7 × 4 ) \: years}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ={ \pmb{ \mathfrak { 28 \:  \: years}}}

Similar questions