Math, asked by mohitpal4646, 10 months ago

8.
The distance between the points (a cos 0 + b sin 0, 0) and (0, a sin 0 - b cos 0), is
(a) a² +6² (6) a² -6² (c) a² +6² (d) a² - 62
n
a
1:1
1:

Answers

Answered by Nereida
17

Correct Question:-

The distance between the points (a cos ∅ + b sin ∅, 0) and (0, a sin ∅ - b cos ∅), is ?

Answer:-

First point = (a cos ∅+ b sin ∅, 0)

Second point = (0, a sin ∅ - b cos ∅)

To find the distance between these two points we need to use distance formula.

The distance formula =

\dag\sf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}

Substituting the values,

\mapsto\sf{\sqrt{{(0 - a\:cos\theta+b\:sin\theta)}^{2}+{(a\: sin\theta-b\:cos\theta - 0)}^{2}}}

\mapsto\sf{\sqrt{{(a\:cos\theta+b\:sin\theta)}^{2}+{(a\:sin\theta-b\:cos\theta)}^{2}}}

\mapsto\sf{\sqrt{{(a\:cos\theta)}^{2}+{(b\:sin\theta)}^{2}+(2\times a\:cos\theta\times b\:sin\theta) + {(a\:sin\theta)}^{2}+{(b\: cos\theta)}^{2}-(2\times a\:sin\theta\times b\:cos\theta)}}

\mapsto\sf{\sqrt{{(a\:cos\theta)}^{2}+{(b\:sin\theta)}^{2}+{(a\:sin\theta)}^{2}+{(b\:cos\theta)}^{2}}}

\mapsto\sf{\sqrt{{(a\:cos\theta)}^{2}+{(a\:sin\theta)}^{2}+{(b\:sin\theta)}^{2}+{(b\:sin\theta)}^{2}}}

Now, removing the common,

=> a² (cos²∅+sin²∅) + b² (cos²∅+sin²∅)

We know that, sin²∅+cos²∅=1.

Hence, a² + b² is the distance between two given points.

Answered by Rythm14
32

Distance formula :- √(x1 - x2)^2 + (y1 - y2)^2

  • x1 = (a cosθ + b sinθ)
  • x2 = 0
  • y1 = 0
  • y2 = (a sinθ- b cosθ)

Substituing values in the formula,

 \rightarrow \:   \sqrt{ {( \sf \: acos \theta + bsin \theta - 0)}^{2}  +  {(0 -  \sf \: asin \theta - bcos \theta)}^{2} }  \\ \rightarrow \:  \sqrt{ {a}^{2}  { \sf \: cos \theta}^{2} +   {b}^{2}  { \sf \: sin \theta}^{2}  +  \sf \: 2abcos \theta \: sin \theta + {a}^{2}  { \sf \: sin \theta}^{2} +   {b}^{2}  { \sf \: cos\theta}^{2}   -   \sf \: 2absin \: \theta \: cos \: \theta } \\   \\  \bigstar   \sf \: \underline{cancel \: out \:  (+ 2abcos \theta \: sin \theta ) \: and \: ( - 2absin \: \theta \: cos \: \theta)} \\ \\ \rightarrow \:   \sf \: \sqrt{ {a}^{2}  {cos}^{2}  +  {a}^{2}  {sin}^{2}  +  {b}^{2}  {sin}^{2}  +   {b}^{2}   {cos}^{2} }  \\ \rightarrow \:  \sf \: \sqrt{ {a}^{2} ( {cos}^{2}  +  {sin}^{2} ) +  {b}^{2} ( {sin}^{2} +  {cos}^{2} ) }  \\   \\ \bigstar   \sf \: \underline{ ({cos}^{2} \theta  +  {sin}^{2}  \theta \:  = 1)} \\  \\ \rightarrow \:  \sqrt{ {a}^{2} (1) +  {b}^{2}(1) }  \\  \rightarrow \:   { \sqrt{ {a}^{2} +  {b}^{2}  } }

Similar questions