Math, asked by srivallitallapelli, 4 months ago

8
The number of integers satisfying the inequality log 1/2 |x-3|>-1 is

Answers

Answered by shadowsabers03
15

We're given the inequality,

\longrightarrow\log_{\frac{1}{2}}|x-3|>-1

Since \log x is only defined for x>0,

\longrightarrow |x-3|>0

On removing the modulus sign in LHS we get the following.

\longrightarrow x-3\in(-\infty,\ 0)\cup(0,\ \infty)

\longrightarrow x\in(-\infty,\ 3)\cup(3,\ \infty)\quad\quad\dots(1)

Now,

\longrightarrow\log_{\frac{1}{2}}|x-3|>-1

or,

\longrightarrow\dfrac{\log|x-3|}{\log\left(\dfrac{1}{2}\right)}>-1

\longrightarrow\dfrac{\log|x-3|}{-\log2 }>-1\quad\quad\left[\because\,\log\left(\dfrac{1}{2}\right)=\log\left(2^{-1}\right)=-\log2\right]

\longrightarrow-\dfrac{\log|x-3|}{\log2} >-1

Multiplying by -1, (note the symbol change)

\longrightarrow\dfrac{\log|x-3|}{\log2}<1

Multiplying by \log2,

\longrightarrow\log|x-3|<\log2

Taking antilog,

\longrightarrow|x-3|<2

On removing the modulus sign in LHS we get the following.

\longrightarrow x-3\in(-2,\ 2)

\longrightarrow x\in(-2+3,\ 2+3)

\longrightarrow x\in(1,\ 5)\quad\quad\dots(2)

Taking (1)\land(2) we get,

\longrightarrow x\in(1,\ 3)\cup(3,\ 5)

This is the solution of the inequality.

So the possible integral values of x are,

\longrightarrow x\in\{2,\ 4\}

Hence the no. of integral values of x is 2.

Answered by Anonymous
12

hello

Answer

log

2

1

∣x−3∣ is meaningful when x

=3

log

2

1

∣x−3∣>−1

⇒−log

2

∣x−3∣>−1[∵log

1/a

b=−log

a

b]

⇒log

2

∣x−3∣<1, multiplied both sides with −1, so inequality changes

⇒∣x−3∣<2

⇒−2<x−3<2

⇒1<x<5

⇒x∈(1,5)−{3}

Therefore, integral values are 2,4 that is 2 integral values.

Ans: 2

Similar questions
Science, 11 months ago