Math, asked by ranamia1088, 4 months ago

solve the linear differential equations d^3y/dx^3+6(d^2y/dx^2)+11(dy/dx)+6y=0.

Answers

Answered by shadowsabers03
15

Assume,

\longrightarrow y=e^{kx}

Then,

\longrightarrow y_1=ke^{kx}

and,

\longrightarrow y_2=k^2e^{kx}

and,

\longrightarrow y_3=k^3e^{kx}

So,

\longrightarrow y_3+6y_2+11y_1+6y=0

\longrightarrow k^3e^{kx}+6k^2e^{kx}+11ke^{kx}+6e^{kx}=0

\longrightarrow e^{kx}\left(k^3+6k^2+11k+6\right)=0

Since e^{kx}\neq0,

\longrightarrow k^3+6k^2+11k+6=0

\longrightarrow k^3+k^2+5k^2+5k+6k+6 =0

\longrightarrow k^2(k+1)+5k(k+1)+6(k+1)=0

\longrightarrow (k+1)(k^2+5k+6)=0

\longrightarrow (k+1)(k^2+2k+3k+6)=0

\longrightarrow (k+1)(k(k+2)+3(k+2))=0

\longrightarrow (k+1)(k+2)(k+3)=0

\Longrightarrow k\in\{-3,\ -2,\ -1\}

Hence the possible solutions are,

\longrightarrow y=e^{-3x}

\longrightarrow y=e^{-2x}

\longrightarrow y=e^{-x}

Generally, we can represent these solutions as,

\longrightarrow\underline{\underline{y=Ae^{-3x}+Be^{-2x}+Ce^{-x}}}

for some arbitrary constants A,\ B and C.

Answered by diajain01
40

{\colorbox{cyan}{✿QuesTion}}

solve the linear differential equations :-

 \frac{d^3y}{dx^3}  +6( \frac{d^2y/dx^2}{?} )+11 \frac{dy}{dx} +6y=0.

______________________________________________★

{\colorbox{pink}{✿ AnsWer}}

( {D}^{3} y \:  + 6 {D}^{2} y \:  + 11Dy + 6y) = 0

❆( \frac{d}{dx}  = D)

 \purple \therefore

 \longmapsto \: ( {D}^{3}  + 6 {D}^{2}  + 11D + 6)y = 0

 \phi(D)y = 0

 \red {A.E.}

 : \longrightarrow  \phi \: (D) = 0

 \blue{i.e.}

 : \longrightarrow  {D}^{3}  + 6 {D}^{2}  + 11D + 6 = 0

\orange{roots:-}

 \longmapsto \: D \:  =  - 1, \:  \: D \:  =  - 2, \: D \:  =  - 3.

\pink{G.S.  \: is :-}

{ \boxed{ \underline{ \orange{y \:  = c_1 \:  {e}^{ - x} + c _2 \:  {e}^{ - 2x}  + c_ 3 \:  {e}^{ - 3x} }}}}

______________________________________________★

Similar questions
Science, 10 months ago