Math, asked by ansh7663, 9 months ago

8. The ratio of the sum and product of the roots of the equation
7xsquare - 12x + 18 = 0 is
(a) 7:12 (b)7:18 (c) 2:3
(d) 3:2

Answers

Answered by ItzAditt007
1

\rule{400}4

ANSWER:-

▪︎ Given Quadratic Equation:-

\tt\leadsto7 {x}^{2}  - 12x + 18 = 0

▪︎ To Find:-

  • The ratio of Sum and Product of the zeroes.

\rule{400}2

▪︎ Concepts Used:-

\sf\leadsto Sum\:Of\:Zeroes = \frac{-b}{a} \\ \\ \sf\leadsto Product\:Of\:Zeroes = \frac{c}{a}

Where,

  • a = Coefficient of x²

  • -b = -Coefficient of x.

  • c = Constant Term.

\rule{400}2

▪︎ Now,

\tt\mapsto Sum\:Of\:Zeroes = \frac{-b}{a} \\ \\ \tt\mapsto Sum\:Of\:Zeroes = \frac{-(-12)}{7} \\ \\ \tt\mapsto Sum\:Of\:Zeroes = \frac{12}{7}

And,

\tt \mapsto Product\:Of\:Zeroes = \frac{c}{a} \\ \\ \tt\mapsto Product\:Of\:Zeroes = \frac{18}{7}

\rule{400}2

▪︎ Therefore,

\sf \mapsto \frac{Sum\:Of\:Zeroes}{Product\:Of\:Zeroes} = \frac{12/ \cancel{7}}{18/ \cancel{7}} \\ \\ \sf \mapsto \frac{Sum\:Of\:Zeroes}{Product\:Of\:Zeroes} = \cancel\frac{12}{18} \\ \\ \sf \mapsto \frac{Sum\:Of\:Zeroes}{Product\:Of\:Zeroes} = \frac{2}{3} \\ \\  \sf \mapsto Sum\:Of\:Zeroes:Product\:Of\:Zeroes =2:3

\rule{400}4

\therefore The ratio of sum and product of the zeroes = 2:3.

So the final answer is Option C:- 2:3

\rule{400}4

Similar questions