Math, asked by annapaul367, 11 months ago

8. The sum of the digits of a two-digit number is 9. When the digits are reversed, the number is increased by 9. Find the number.

Answers

Answered by StarrySoul
53

Given :

• Sum of the digits of a two digit number is 9

• When digits are reversed,Number increased by 9

To Find :

• The number

Answer :

★ 45

Solution :

Let the digit at tens place be y and digit at ones place be x

 \star \sf \: Original  \: Number  = 10y + x

 \star \sf \:   Interchanged \: Number  = 10x + y

As per the question :

 \longrightarrow \sf x + y = 9....(i)

Again as per the question :

Reversed number = Original number + 9

10x + y = 10y + x + 9

10x + y - 10y - x = 9

9x - 9y = 9

 \longrightarrow \sf x - y = 1....(ii)

Adding both equations we'll get,

x - y = 1

x + y = 9

-----------

2x = 10

x = 10/2

 \sf \longrightarrow \boxed{ \red{ \sf \: x = 5}}

Sub x in y + x = 9.

y + x = 9

y + 5 = 9

y = 9 - 5

 \sf \longrightarrow \boxed{ \red{  \sf \: y = 4}}

________________________________

 \star \sf \: Original  \: Number  = 10y + x \\  \rightarrow \: 10(4) + 5 =  \boxed{ \purple{45}}


Anonymous: Good answer
StarrySoul: Thank you! ♡
Answered by Anonymous
46

Given :

  • The sum of the digits of a two-digit number is 9.
  • When the digits are reversed, the number is increased by 9.

To Find :

  • The two digit number

Solution :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = (10x+y)

Case 1 :

The ten's digit (x) and the unit's digit (y) adds up to 9.

Equation :

\longrightarrow \sf{x+y=9}

\sf{x=9-y\:\:\:(1)}

Case 2 :

If the digits of the two digit number is reversed, the new number formed is increased by 9.

Reversed Number = (10y+x)

Equation :

\longrightarrow \sf{10y+x=10x+y+9}

\longrightarrow \sf{10y-y=10x-x+9}

\longrightarrow \sf{9y=9x+9}

\longrightarrow \sf{9x+9=9y}

\longrightarrow \sf{9x-9y=-9}

\longrightarrow \sf{\cancel\dfrac{9}{9}x\:-\:\cancel\dfrac{9}{9}y\:=\:\cancel\dfrac{-9}{9}}

\longrightarrow \sf{x-y=-1}

From equation (1), x = 9-y,

\longrightarrow \sf{9-y-y=-1}

\longrightarrow \sf{9-2y=-1}

\longrightarrow \sf{-2y=-1-9}

\longrightarrow \sf{-2y=-10}

\longrightarrow \sf{y=\cancel\dfrac{-10}{-2}}

\longrightarrow \sf{y=5}

Substitute, y = 5 in equation (1),

\longrightarrow \sf{x=9-y}

\longrightarrow \sf{x=4}

\large{\boxed{\sf{\purple{Ten's\:digit\:=\:x\:=\:4}}}}

\large{\boxed{\sf{\red{Unit's\:digit\:=\:y\:=\:5}}}}

\large{\boxed{\sf{\purple{Originl\:Number\:=\:10x+y\:=\:10(4)\:+\:5\:=\:40\:+\:5\:=\:45}}}}

Similar questions