Physics, asked by harshita2222, 9 months ago

8.Two forces of magnitude 8 N and 15 N respectively
act at a point. If the resultant force is 17 N, the
angle between the forces has to be
(1) 60°
(2) 45°
(3) 90°
(4) 30​

Answers

Answered by Tanujrao36
11

\huge\bigstar\sf{\underline{Given\::-}}

  • \sf{\ F_{1}=8N}

  • \sf{\ F_{2}=15N}

  • \sf{\ F_{resultant}=17N}

\huge\bigstar\sf{\underline{To\:Find\::-}}

  • Angle between Force \sf{\ F_{1}} and \sf{\ F_{2}}

\huge\bigstar\sf{\underline{Solution\::-}}

  • Let the \sf\ F_{resultant} be the resultant of these two forces.

\sf\small{\red{\ F_{resultant}=\sqrt{\ (\ F_{1})^{2}+\ (\ F_{2})^{2}+2\ F_{1}\ F_{2} Cos(\theta)}}}

{}

On squaring both side

{}

\sf\small{\ (\ F_{resultant})^{2}=\ (\ F_{1})^{2}+\ (\ F_{2})^{2}+2\ F_{1}\ F_{2} Cos(\theta)}

\mapsto\sf{\ (17)^{2}=\ (8)^{2}+\ (15)^{2}+2(8)(15) Cos(\theta)}

\mapsto\sf{289=64+225+240 Cos(\theta)}

\mapsto\sf{289=289+240 Cos(\theta)}

\mapsto\sf{240 Cos(\theta)=289-289}

\mapsto\sf{240 Cos(\theta)=0}

\mapsto\sf{Cos(\theta)=0}

\mapsto\sf{ Cos{\theta}= Cos{\dfrac{\pi}{2}}}

\mapsto\sf{\cancel{Cos}{\theta}=\cancel{Cos}{\dfrac{\pi}{2}}}

\mapsto\sf{\theta=\dfrac{\pi}{2}}

The angle is in radian we can change into degree by multiplying it with \sf{\dfrac{180}{\pi}}

\sf{\theta=\dfrac{\pi}{2}\times \dfrac{180}{\pi}}

\sf{\theta=\dfrac{\cancel{\pi}}{\cancel{2}}\times \dfrac{\cancel{180}}{\cancel{\pi}}}

\sf{\boxed{\boxed{\pink{\dag{\theta = 90°}}}}}

  • So the angle between these two forces is 90° , means these forces are perpendicular to each other .
Answered by SarcasticL0ve
19

90°

Given:-

\;\;\;\bullet\;\sf F_1 = 8N \\ \\ \;\;\;\bullet\;\sf F_2 = 15N \\ \\ \;\;\;\sf F_{resultant} = 17N

To find:-

\;\;\;\sf Angle\;b/w\;F_1 and F_2

Solution:-

As we know that,

If \sf F_{resultant} is the resultant of these two forces \sf F_1 and F_2

\dag\;{\underline{\boxed{\bf{\blue{ F_{resultant} = \sqrt{( F_1 )^2 + ( F_2 )^2 + 2 F_1 F_2 \cos{ \theta}}}}}}}

★ Squaring both sides:-

:\implies\sf ( F_resultant )^2 = ( F_1 )^2 + ( F_2 )^2 + 2 F_1 F_2 \cos{ \theta} \\ \\ \dashrightarrow\sf (17)^2 = (8)^2 + (15)^2 + 2 \times 8 \times 15 \times \cos{ \theta} \\ \\ \dashrightarrow\sf 289 = 64 + 225 + 240 \cos{ \theta} \\ \\ \dashrightarrow\sf 240 \cos{ \theta} = 289 - 289 \\ \\ \dashrightarrow\sf 240 \cos{ \theta} = 0 \\ \\ \dashrightarrow\sf \cos{ \theta} = 0

As we know that,

Value of  \theta is 0 at cos90°

Therefore,

\dashrightarrow\sf \cos{ \theta} = \cos{90^\circ}\qquad\bigg\lgroup\bf \cos{90^\circ} = 0\bigg\rgroup \\ \\ \dashrightarrow\sf { \cancel{ \cos}}{ \theta} = { \cancel{ \cos}}{90^\circ} \\ \\ \dag\;{\underline{\boxed{\bf{\red{\dashrightarrow \theta = 90^\circ}}}}}

★ Therefore, the angle b/w these two forces is 90°

★ So, we can say that these forces are perpendicular to each other.

\dag Hence, Option (3) is correct.

\rule{200}{3}

Similar questions