Physics, asked by KishoreRishwanth, 8 months ago

8.
When a body covers first one third distance with speed 1m/s, the second one third distance
with speed 2m/s and the last one third distance with speed 3m/s then average speed is
1) 2.24 m/s
2) 1.79 m/s
3) 2.66 m/s
4) 1.64 m/s​

Answers

Answered by zenithria123
1

Answer:

option 2

Explanation:

avg speed = total dis/total time

so total distance = X

t1 = (1/3x)/1

t2=(1/3x)/2

t3=(1/3x)/3

avg speed =  avg speed = (t1+t2+t3)/x

=11/6m/s=1.8m/s

Answered by archanajhaasl
0

Answer:

The average speed of the body is 1.64m/s i.e.option(4).

Explanation:

The average speed is calculated as,

\mathrm{V_{avg}=\frac{d}{T} }        (1)

Where,

\mathrm{V_{avg} }=average speed

T=total time

From the question, we have the following cases,

First one-third distance

Distance traveled(x₁)=\mathrm{\frac{d}{3} }

The speed with which the body travels(v₁)=1m/s

Calculating the amount of time needed to travel this distance,

\mathrm{t_1=\frac{x_1}{v_1} }         (2)

Inserting the values in equation (2) we get;

\mathrm{t_1=\frac{\frac{d}{3} }{1} }

\mathrm{t_1=\frac{d}{3} }           (3)

Second one-third distance

Distance traveled(x₂)=\mathrm{\frac{d}{3} }

The speed with which the body travels(v₂)=2m/s

Calculating the amount of time needed to travel this distance,

\mathrm{t_2=\frac{x_2}{v_2} }           (4)

Inserting the values in equation (4) we get;

\mathrm{t_2=\frac{\frac{d}{3} }{2} }

\mathrm{t_2=\frac{d}{6}  }      (5)

Third one-third distance

Distance traveled(x₃)=\mathrm{\frac{d}{3} }

The speed with which the body travels(v₃)=3m/s

Calculating the amount of time needed to travel this distance,

\mathrm{t_3=\frac{x_3}{v_3} }                (6)

Inserting the values in equation (6) we get;

\mathrm{t_3=\frac{\frac{d}{3} }{3} }

\mathrm{t_3=\frac{d}{9} }         (7)

Now by placing values in equation (1) we get;

\mathrm{V_{avg}=\frac{d}{t_1+t_2+t_3} }

\mathrm{V_{avg}=\frac{d}{\frac{d}{3} +\frac{d}{6} +\frac{d}{9} } }

\mathrm{V_{avg}=\frac{d}{\frac{11d}{18} }  }

\mathrm{V_{avg}=\frac{18}{11}\ m/s  }

\mathrm{V_{avg}\approx 1.64 \ m/s  }

Hence, the average speed of the body is 1.64m/s i.e.option(4).

#SPJ2

Similar questions