એક એક લંબઘન બોક્સ ની લંબાઈ, પહોળાઈ, અને ઉંચાઇ અનુક્રમે 80 સેન્ટીમીટર, 40 સેન્ટીમીટર અને 20 છે તો આવા કેટલાક કાગળ ની જરૂર પડશે
Answers
Step-by-step explanation:
REF.Image
Given ΔABE≅ΔACD
To prove ΔADE∼ΔABC
proof it is given that
ΔABE≅ΔACD
Therefore AB= AC [By CPCT] _______ (1)
And AE=AD [By CPCT]
⇒AD=AE __________ (2)
Now Divide (2) by (1) we have
AB
AD
=
AC
AE
_________ (3)
Now in ΔADE & ΔABC
AB
AD
=
AC
AE
[ from equation (3)]
∠A=∠A [ common]
⇒ΔADE∼ΔABC
By SAS criterian of similarity !
Hence proved !
Answer:
so here for a rectangular box
length(1)=80.cm
breadth(b)=40.cm
height(h)=20.cm
4G TA 33
also for a square paper
side=40.cm
so then
we know that total surface area of any rectangular object=
2(lb+bh+lh)
surface area of any square-shaped
object-6.side.square
thus no of papers that can be made from such dimensions-surface area of rectangular box/surface area of square paper
surface area of any square-shaped object-6.side.square
thus no of papers that can be made from such dimensions=surface area of rectangular box/surface area of square
paper
=2(lb+bh+lh)/6.side square
=2[(80×40)+(40×20)+(80×20)]/(40)square
=2(3200+800+1600)/1600
=2×5600/1600
=11200/1600
=7
hence 7 papers are required to